На правах рукописи

Гребнева Анна Александровна

Физико-химические основы гидрохимического синтеза твердых растворов хлорид-бромида серебра

Специальность 02.00.04 – Физическая химия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2012

Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего профессионального образования «Уральский федеральный университет имени первого Президента России Б.Н.Ельцина»

Научный руководитель:	 Жукова Лия Васильевна, доктор технических наук, старший научный сотрудник, ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н.Ельцина», профессор Рудой Валентин Михайлович, доктор химических наук, профессор, ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н.Ельцина», профессор 						
Официальные оппоненты:							
	Кутьин Александр Михайлович, доктор химических наук, ФГБУН «Институт химии высокочистых веществ имени Г.Г. Девятых» Российской академии наук, ведущий научный сотрудник						
Ведущая организация:	ФГБОУ ВПО «Уральский государственный лесотехнический университет»						

Защита состоится <u>23 января</u> 2013 г. в <u>13.00</u> часов на заседании диссертационного совета Д 004.002.01 при Институте высокотемпературной электрохимии УрО РАН по адресу: г. Екатеринбург, ул. Академическая, 20, конференцзал.

Ваши отзывы в двух экземплярах, подписанные и заверенные гербовой печатью, просим высылать по адресу: 620990, Екатеринбург, ул. Академическая, 20, Институт высокотемпературной электрохимии УрО РАН. Ученому секретарю диссертационного совета Кулик Н.П.

E-mail: <u>N.P.Kulik@ihte.uran.ru</u>. Факс +7(343)3745992.

С диссертацией можно ознакомиться в Центральной научной библиотеке УрО РАН, г.Екатеринбург, ул. Софьи Ковалевской, 20.

Автореферат разослан « 18 » ноября 2012 г.

Учёный секретарь диссертационного совета кандидат химических наук

Н.П. Кулик

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Твердые растворы хлорид-бромида серебра {AgCl, AgBr}(т) в форме монокристаллов представляют большой интерес для ИК-волоконной оптики. Они обладают высокой оптической прозрачностью в широком диапазоне длин волн видимого и ИК излучений (от 0,4 до 40 мкм), высокой механической пластичностью, допускающей изготовление из них методом экструзии тонких и гибких волокон большой длины, и характеризуются отсутствием гигроскопичности и токсичности.

Выращивание монокристаллов {AgCl, AgBr}(т) производится обычно методом направленной кристаллизации из расплава по Бриджмену-Стокбаргеру. В этом деле выбор сырья, из которого готовится расплав, оказывает наиболее сильное влияние на качество выращенных монокристаллов. Имеется два принципиально разных подхода к решению сырьевой проблемы. Первый из них базируется на использовании двухфазного сырья в виде механической смеси индивидуальных AgCl(T^{o}) и AgBr(T^{o}), а второй – на использовании однофазного сырья в виде твердых растворов {AgCl, AgBr}(т), синтезированных гидрохимическим путем в поликристаллическом (дисперсном) состоянии. Опыт показывает, что однофазное сырье по ряду технологических показателей существенно превосходит двухфазное и обеспечивает выращивание из расплава оптических монокристаллов высокого качества.

До последнего времени гидрохимический синтез твердых растворов {AgCl, AgBr}(т) осуществлялся исключительно методом термозонной кристаллизации [1], который при всех его достоинствах обнаруживает довольно слабую технологическую управляемость, когда речь заходит о получении твердого раствора со строго заданным относительным содержанием компонентов.

В настоящей работе предлагается использовать новый более совершенный по управляемости метод гидрохимического синтеза твердых растворов {AgCl, AgBr}(т), называемый условно методом кислотного воздействия на индивидуальные галогениды (КВИГ). Он основан на явлении образования твердо-

го раствора при изотермическом взаимодействии одновременно двух или только одного из индивидуальных галогенидов $AgCl(T^{o})$ и $AgBr(T^{o})$ со смесью хлористо- и бромистоводородной кислот $\{H_2O, HCl, HBr\}(ж)$. Его главное достоинство заключается в том, что он допускает теоретический расчет и строгое выполнение условий формирования твердого раствора $\{AgCl, AgBr\}(T)$ любого заданного состава. Кроме того, он достаточно прост в технологической реализации, не требует сложного и дорогостоящего оборудования.

Диссертационная работа выполнялась при поддержке со стороны программ «У.М.Н.И.К. 2010» и «У.М.Н.И.К. 2011» на конкурсной основе.

Цель и задачи работы

Настоящая работа имеет целью создание физико-химических основ гидрохимического синтеза твердых растворов {AgCl, AgBr}(т) по методу КВИГ в терминах количественных понятий и соотношений.

Её важнейшими задачами являются:

• структурное моделирование гидрохимического синтеза {AgCl, AgBr}(т) для получения конкретного представления о фазовом, компонентном и субкомпонентном составах гидрохимической системы (ГХС), компонентных составах фаз, химических и фазовых превращениях в ГХС;

• экспериментальное исследование количественных закономерностей синтеза с учетом результатов его структурного моделирования;

 термодинамическое установление связей между равновесными переменными компонентных составов фаз и температурой в строгой форме, учитывающей коэффициенты активностей фазовых компонентов;

 построение математической модели гидрохимического синтеза на основе уравнений баланса для концентраций фазовых компонентов и термодинамических выражений законов равновесия базисных внутрифазных и межфазных реакций, экспериментальная проверка модели;

 получение монокристаллов для ИК-волоконной оптики при использовании в качестве сырья синтезированных гидрохимическим методом КВИГ твердых растворов {AgCl, AgBr}(т).

Научная новизна

• Впервые реализован гидрохимический синтез твердых растворов {AgCl, AgBr}(т) методом кислотного воздействия на индивидуальные галогениды (КВИГ) и выполнено его физико-химическое исследование в широких диапазонах технологических параметров.

• Предложена фазово-компонентная модель синтеза, на базе которой дан вывод балансовых уравнений для чисел молей и концентраций фазовых компонентов, позволяющих упорядочить материальные расчеты.

• Разработаны химико-гравиметрический метод определения мольных долей компонентов в твердом растворе и косвенный химический метод определения концентрации серебра в жидкой фазе.

• Экспериментальным путем установлено количественное соответствие в ГХС между начальными переменными, включая температуру, и равновесными переменными.

• Выполнено моделирование стехиометрии химического превращения в жидкой фазе и массообменных процессов между твердой и жидкой фазами.

• Впервые проведен термодинамический анализ равновесных состояний ГХС с учетом коэффициентов активностей фазовых компонентов и получены строгие аналитические выражения связей между равновесными составами фаз и температурой. Установлено, что твердые растворы {AgCl, AgBr}(т) по своему поведению близки к регулярным растворам.

• Впервые на термодинамической основе получена математическая модель гидрохимического синтеза, связывающая начальный состав ГХС и температуру с равновесным составом твердого раствора.

Практическая значимость

• Показано, что твердые растворы {AgCl, AgBr}(т), синтезированные гидрохимическим методом КВИГ, могут быть использованы как сырье для выращивания ИК оптических монокристаллов высокого качества.

• Результаты диссертационного исследования по своему научному содержанию служат основой для разработки эффективной технологии гидрохимиче-

ского получения на базе метода КВИГ сырьевых твердых растворов {AgCl, AgBr}(т) для ИК-волоконной оптики.

На защиту выносятся

1. Новый гидрохимический метод синтеза твердых растворов {AgCl, AgBr}(т), основанный на изотермическом взаимодействии твердых индивидуальных галогенидов серебра AgCl(τ°) и AgBr(τ°) или их механической смеси с жидким водным раствором галогенводородных кислот {H₂O, HCl, HBr}(ж).

2. Результаты моделирования гидрохимического синтеза в терминах структурных изменений в гидрохимической системе (ГХС) и уравнений баланса для фазовых компонентов и субкомпонентов.

3. Установленные экспериментально количественные закономерности гидрохимического синтеза {AgCl, AgBr}(т).

4. Результаты моделирования стехиометрии химического и фазового превращений в ГХС на уровне внутрифазных и межфазных базисных реакций.

5. Уравнения связей между концентрациями фазовых компонентов и температурой в равновесных состояниях ГХС, полученные термодинамическим путем с привлечением модели регулярных растворов.

6. Математическая модель гидрохимического синтеза, построенная главным образом на основе термодинамических представлений и позволяющая производить прямой теоретический расчет начальных условий синтеза твердых растворов {AgCl, AgBr}(т) требуемых составов.

<u>Личный вклад автора</u>

Основная часть диссертационной работы выполнена автором лично. Автору принадлежит: проведение аналитического обзора по исследуемой проблеме, формулировка цели и задач работы, создание лабораторной установки для гидрохимического синтеза {AgCl, AgBr}(т) по методу КВИГ, разработка методики синтеза и химических методов определения составов твердого раствора и жидкой фазы, выполнение структурного моделирования и экспериментального исследования синтеза, обработка и обобщение результатов экспериментов, осуществление термодинамического анализа равновесных состояний ГХС и свя-

занного с ним большого объема расчетов, построение и экспериментальная проверка математической модели синтеза, формулировка основных выводов.

Апробация работы

Материалы диссертации докладывались на VIII и IX Международных конференциях «Прикладная оптика» в рамках Международного оптического конгресса (С.-Петербург, 2008 и 2010 г.), XV Международной научной конференции молодых ученых (Екатеринбург, 2009 г.), XVII и XVIII Международных конференциях молодых ученых по приоритетным направлениям развития науки и техники (Екатеринбург, 2010 г.), XVI Уральской международной конференции молодых ученых по приоритетным направлениям развития науки и техники (Екатеринбург, 2010 г.), XVI Уральской международной конференции молодых ученых по приоритетным направлениям развития науки и техники (Екатеринбург, 2009 г.), Всероссийской конференции по волоконной оптике (Пермь, 2009 г.), Всероссийской конференции «Функциональные наноматериалы и высокочистые вещества» (Москва, 2010 г.), XIX, XX и XXI Российских молодежных научных конференциях «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2009, 2010 и 2011 г.), XIII Национальной конференции по росту кристаллов (Москва, 2008 г.), XIV Отчетной конференции молодых ученых УГТУ-УПИ (Екатеринбург, 2008 г.).

<u>Публикации</u>

По материалам диссертации опубликована 21 работа, в том числе 13 статей (из них 3 статьи в журналах из перечня ВАК), 6 тезисов докладов, 1 патент РФ, 1 учебное пособие.

Структура и объем работы

Диссертационная работа состоит из введения, шести глав, заключения, списка использованной литературы (130 наименований) и приложения (10 страниц). Материал диссертации изложен на 164 страницах основного текста, содержит 53 рисунка и 13 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

<u>Во введении</u> обоснована актуальность работы, сформулированы цель и задачи исследований, дана характеристика научной новизны и практической

значимости полученных результатов, приведены основные положения, выносимые на защиту.

<u>В первой главе</u> выполнен аналитический обзор разных по природе материалов для ИК-волоконной оптики и сделан обоснованный выбор в пользу монокристаллов хлорид-бромида серебра {AgCl, AgBr}(т).

В этой же главе обсуждается проблема сырья для выращивания монокристаллов {AgCl, AgBr}(т) методом направленной кристаллизации из расплава по Бриджмену-Стокбаргеру. Показано, что однофазное сырье в виде поликристаллического твердого раствора {AgCl, AgBr}(т), синтезированного гидрохимическим путем, обладает явным преимуществом перед двухфазным сырьем в виде механической смеси AgCl(τ^{o}) и AgBr(τ^{o}) по устойчивости к нагреванию до плавления в обычной воздушной среде.

Здесь же рассмотрен вопрос о методах гидрохимического синтеза твердых растворов {AgCl, AgBr}(т). Отмечены недостатки единственного известного метода термозонной кристаллизации-синтеза (ТЗКС) [1] и предложен новый более совершенный по управляемости метод, названный условно методом кислотного воздействия на индивидуальные галогениды (КВИГ).

Вторая глава посвящена структурному моделированию гидрохимического синтеза {AgCl, AgBr}(т) по методу КВИГ на основе принципов системного подхода к объектам познания. В ней рассмотрены составные части гидрохимической системы (ГХС) и фазово-компонентная модель (*PhC-Mod*) гидрохимического синтеза, а также балансовые уравнения для чисел молей и концентраций фазовых компонентов.

Роль основных составных частей в ГХС играют автономные фазы α , компоненты *k* и субкомпоненты *s'* [2]. Множества { α }, {*k*} и {*s'*} определяют соответственно фазовый α -*Comp*, компонентный *k*-*Comp* и субкомпонентный *s'*-*Comp* составы ГХС:

$$\alpha - Comp = \{\alpha\} = \{\mathsf{T}, \mathsf{T}_1^0, \mathsf{T}_2^0, \mathsf{w}, \mathsf{w}_1\}, \tag{1}$$

$$k-Comp = \{k\} = \{H_2O, HCl, HBr, AgCl, AgBr, H^+, OH^-, Cl^-, Br^-, Ag^+, AgCl_2^-, AgBr_2^{-}, AgCl_3^{2-}, AgBr_3^{2-}, AgCl_4^{3-}, AgBr_4^{3-}\},$$
(2)

$$s'-Comp = \{s'\} = \{H', O', Cl', Br', Ag', e'\},$$
(3)

где т, τ_1^o , τ_2^o , ж, ж₁ – указатели агрегатных состояний различных фаз α .

Используется также понятие о составе ГХС более высокого ранга в форме множества компонентных составов фаз {{k}(α)} (оно дает конкретное представление о распределении компонентов k по фазам α). На его основе построена *PhC-Mod* гидрохимического синтеза, где синтез выступает как преобразование начального (неравновесного) фазово-компонентного состава ГХС в конечный (равновесный) за интервал времени $\Delta t_{\text{рав}} = t_{\text{рав}} - t_0$, а твердый раствор является продуктом химического и фазового превращений (символы *ch* и *ph*):

В рамках *PhC-Mod* (4) составлены балансовые уравнения для чисел молей и концентраций фазовых компонентов на интервале времени $\Delta t_{\text{рав}}$. Путем композиции этих уравнений получено уравнение связи между важнейшими параметрами синтеза:

$$c_{X^{-}, paB}^{(m)} = c_{X^{-}, 0}^{(m)} + c_{0}^{(3ar)} \left(N_{AgX, 0}^{(T^{0})} - N_{AgX, paB}^{(T)} \right) + c_{Ag', paB}^{(m)} N_{AgX, paB}^{(T)} - \widetilde{c}_{X', paB}^{(m)} \quad (X = Cl, Br), \quad (5)$$

где $c_{X^-,0}^{(m)}$ и $c_{X^-,pab}^{(m)}$ – начальная и равновесная плотности чисел молей ионов $X^-(m)$ в жидкой фазе ж; $N_{AgX,0}^{(T^0)}$ и $N_{AgX,pab}^{(T)}$ – начальная и равновесная мольные доли галогенида серебра AgX соответственно в исходной механической смеси индивидуальных галогенидов {AgX}(T^0) и в синтезируемом твердом растворе {AgX}(T); $c_{Ag',pab}^{(m)}$ – равновесная плотность числа молей субкомпонента Ag'(ж) в фазе ж, где данный субкомпонент находится в составе фазовых компонентов Ag⁺(ж) и AgX_g^{1-g}(ж) (g = 1, ..., 4) (величина $c_{Ag',pab}^{(m)}$ имеет смысл растворимости

фазы т в фазе ж); $\tilde{c}_{X', pab}^{(m)}$ – равновесная плотность числа молей той части субкомпонента X'(ж) в фазе ж, которая входит в состав фазовых компонентов AgX_g^{1-g}(ж) (g = 1,..., 4); $c_0^{(3ar)}$ – начальная мольная плотность загрузки реактора.

Уравнение (5) позволяет упорядочить материальные расчеты и постановку экспериментов по синтезу {AgCl, AgBr}(т). Оно является также одним из исходных уравнений при построении математической модели синтеза.

Третья глава содержит описание экспериментального исследования количественных закономерностей синтеза {AgCl, AgBr}(т) по методу КВИГ, выполненного с учетом композиционного балансового уравнения (5). В ней рассмотрены методика экспериментов по синтезу, физико-химические методы анализа компонентных составов фаз и фазового состава твердых осадков и результаты экспериментов. Роль исходных серебросодержащих веществ при синтезе играли: либо AgCl(τ°), либо AgBr(τ°), либо их механическая смесь (варианты синтеза 1, 2, 3).

Синтез проводился на изготовленной нами лабораторной установке, конструкция которой обеспечивает непрерывное перемешивание конденсированных фаз в реакторе и поддержание температуры в нём с точностью $\pm 0,5$ К. По истечении определенного интервала времени $\Delta t = t - t_0$ жидкая фаза отделялась от твердого осадка путем декантации. Осадок промывался дистиллированной водой и подвергался сушке до постоянной массы.

Определение $N_{AgBr}^{(oc)}$ в осадке выполнялось разработанным нами для этой цели химико-гравиметрическим методом, который основан на химическом преобразовании осадка в твердый Ag₂S с помощью ионов S²⁻ в водной среде и измерении масс $m^{(oc)}$ и m_{Ag_2S} того и другого твердых веществ:

$$N_{\rm AgBr}^{\rm (oc)} = \frac{M_{\rm Ag_2S}}{2(M_{\rm AgBr} - M_{\rm AgCl})} \left(\frac{m^{\rm (oc)}}{m_{\rm Ag_2S}} - \frac{2M_{\rm AgCl}}{M_{\rm Ag_2S}}\right),\tag{6}$$

где M_{Ag_2S} , M_{AgCl} , M_{AgBr} – мольные массы Ag_2S , AgCl, AgBr. Очевидно, что $N_{AgBr}^{(oc)} = N_{AgBr, pab}^{(T)}$ при $t = t_{pab}$. Вопрос о фазовом составе осадков решался посредством рентгенофазового анализа на дифрактометре типа ДРОН 2.0 (излучение CuK_{α} , интервал углов $2\Theta \in [10; 80]^{\circ}$, шаг 0,05°, время экспозиции 1 с) с привлечением картотеки дифрактометрических данных JCPDS-ICDD.

Для определения величины $c_{Ag',pab}^{(\pi)}$ нами был предложен косвенный химический метод, который основан на установлении массы $m_{pab}^{(T)}$ полученного твердого раствора {AgX}(T) и мольных долей $N_{AgX,pab}^{(T)}$ в нём при известных массе $m_0^{(T^0)}$ исходной механической смеси {AgX}(T^0) и мольных долях $N_{AgX,0}^{(T^0)}$ в ней:

$$c_{\rm Ag', \, pab}^{(m)} = c_0^{(3ar)} \left(1 - \frac{m_{\rm pab}^{(T)}}{m_0^{(T^\circ)}} \frac{\sum_{\rm X} M_{\rm AgX} N_{\rm AgX,0}^{(T^\circ)}}{\sum_{\rm X} M_{\rm AgX} N_{\rm AgX,pab}^{(T)}} \right).$$
(7)

Величину $c_{Ag',pab}^{(m)}$ находили также посредством спектрального анализа на оптическом эмиссионном спектрометре SPECTRO CIROS CDD с возбуждением спектра в индуктивно связанной плазме.

Оценка величин $\tilde{c}_{Cl', pab}^{(m)}$ и $\tilde{c}_{Br', pab}^{(m)}$ производилась по найденным на опыте $c_{Ag', pab}^{(m)}$. Показано, что $\tilde{c}_{Cl', pab}^{(m)} < 4c_{Ag', pab}^{(m)}$, $\tilde{c}_{Br', pab}^{(m)} = 0$, если $N_{AgBrpab}^{(T)} \le 0.9$.

Определение оптимальной продолжительности гидрохимического синтеза $\Delta t_{ont} = \Delta t_{pab}$ осуществлялось путем проверки компонентного состава (мольной доли $N_{AgBr}^{(oc)}$) и фазового состава твердых осадков, полученных за разные промежутки времени Δt . Принималось, что $\Delta t = \Delta t_{ont}$, когда зависимость $N_{AgBr}^{(oc)}(\Delta t)$ выходит на горизонтальный участок, где $N_{AgBr}^{(oc)} = N_{AgBr,pab}^{(T)}$ (рис. 1), а твердый осадок приобретает все признаки однофазного объекта в виде пространственно однородного твердого раствора (рис. 2). Установлено, что во всех вариантах синтеза $\Delta t_{ontr} \leq 3$ час и зависит в основном от T и $c_0^{(3ar)}$, уменьшаясь с ростом T_0

Решение задачи установления соответствия между начальными и равновесными переменными в (5) при разных *T* было выполнено на основе более

Рис. 1. Кривые $N_{AgBr}^{(oc)}(\Delta t)$ при $c_0^{(3ar)}=58,9$ моль/м³, $N_{AgBr,pab}^{(r)}=0,74$: синтез по варианту 1 при $c_{Cl^-,0}^{(\pi)}=2000$ моль/м³ (*a*) и по варианту 2 при $c_{Cl^-,0}^{(\pi)}=6000$ моль/м³ (*б*)

Рис. 2. Рентгенограммы индивидуального AgBr(τ^{o}) и твердых осадков, полученных при синтезе по варианту 2 ($c_0^{(3ar)}$ =58,9 моль/м³, $c_{Cl^-,0}^{(\pi)}$ = 6000 моль/м³, T= 298 K)

100 экспериментов по всем трем вариантам синтеза, где начальные переменные $c_{X^-,0}^{(m)}$, $N_{AgX,0}^{(T^0)}$, $c_0^{(3ar)}$ вместе с температурой *T* играли роль задаваемых величин, а

<i>Т</i> , К	С _{X⁻,0} , моль/м ³				$c_0^{(3 ar)}, c_{Ag}^{(*)}, MOЛЬ/M^3$ МО.	${\cal C}^{({ m {m}})}_{{ m Ag', pab}},$ моль/м 3			$\widetilde{\mathcal{C}}_{X', \text{ рав}}^{(m)} \leq ,$ моль/м ³		С _{X⁻, рав} , моль/м ³	
	Cl	Br	Cl	Br	~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Cl	Br	Cl	Br	Cl	Br
a. Cинтез {AgCl, AgBr}(т) по варианту l												
298	4000	0,0		0,0	140	3,73	1,0	0,0	14,9	0	3989	0,00
		60,9	1,0		115	2,42	0,54	0,46	9,68	0	4045	8,93
		88,8			116	1,91	0,34	0,66	7,64	0	4070	13,5
		100			114	1,74	0,26	0,74	6,96	0	4078	17,6
		122			111	1,14	0,15	0,85	4,56	0	4090	28,6
		0,0		0,0	140	7,68	1,0	0,0	30,7	0	5977	0,00
		63,2	1,0		116	5,44	0,53	0,47	21,8	0	6036	11,3
	6000	96,1			116	4,72	0,33	0,67	18,9	0	6061	21,4
		64,1			56,7	4,07	0,26	0,74	16,3	0	6027	25,1
		130			111	3,21	0,18	0,82	12,8	0	6079	42,0
		0,0	1,0	0,0	140	15,6	1,0	0,0	62,4	0	7953	0,00
		28,0			30,7	10,0	0,47	0,53	40,1	0	7981	17,0
	8000	35,4			30,2	8,28	0,35	0,65	33,1	0	7989	21,2
		69,4			56,8	6,84	0,23	0,77	27,4	0	8018	30,9
		55,6			28,0	6,28	0,20	0,80	25,1	0	7999	38,2
		118			54,7	4,57	0,14	0,86	18,3	0	8029	74,4
333	2000	31,7	1,0	0,0	68,4	1,23	0,63	0,37	4,91	0	2021	6,79
		49,7			60,2	0,927	0,38	0,62	3,71	0	2034	12,9
		47,8			37,2	0,728	0,25	0,75	2,91	0	2025	20,4
		62,4			35,7	0,552	0,16	0,84	2,21	0	2028	32,9
	6000	55,9	1,0	0,0	79,7	8,97	0,54	0,46	35,9	0	6006	23,4
		68,4			58,6	7,53	0,35	0,65	30,1	0	6011	35,1
		83,8			56,8	6,28	0,28	0,72	25,1	0	6018	47,5
		114			56,0	4,66	0,17	0,83	18,6	0	6029	70,9
353	2000	26,9	1,0	0,0	45,6	1,23	0,58	0,42	4,91	0	2015	8,28
		52,8			69,8	1,04	0,46	0,54	4,16	0	2034	15,7
		54,3			34,2	0,729	0,25	0,75	2,92	0	2023	29,3
		84,1			43,9	0,573	0,17	0,83	2,29	0	2034	48,1

Табл. 1. Экспериментальные данные по соответствию между начальными и равновесными переменными в композиционном уравнении баланса (5) при разных *Т* (фрагмент)

равновесные переменные $c_{X^-, pab}^{(\pi)}$, $N_{AgX,pab}^{(\tau)}$, $c_{Ag',pab}^{(\pi)}$, $\tilde{c}_{X',pab}^{(\pi)}$ – роль определяемых величин. Задаваемые величины варьировались в следующих интервалах: $c_{C\Gamma,0}^{(\pi)} \in [1000; 8000]$ моль/м³, $c_{Br^-,0}^{(\pi)} \in [0; 500]$ моль/м³, $N_{AgX,0}^{(\tau^0)} \in [0; 1]$, $c_{0}^{(3ar)} \in [20;$ 140] моль/м³, $T \in [298; 353]$ К. Полученный экспериментальный материал (его небольшой фрагмент дан здесь в табл. 1) свидетельствует, что исследуемое соответствие носит весьма сложный характер; его выражение в аналитической форме должно быть сделано на теоретической основе.

С помощью этого материала удалось установить, что при условии $N_{AgBrpab}^{(T)} \le 0,9$ некоторые слагаемые в правой части композиционного уравнения (5) могут быть отброшены в силу их малости. Конечный результат:

$$c_{\rm CI^{-}, paB}^{(\rm m)} = c_{\rm CI^{-}, 0}^{(\rm m)} - c_{0}^{(\rm 3ar)} \left(N_{\rm AgBr, 0}^{(\rm T^{0})} - N_{\rm AgBr, paB}^{(\rm T)} \right), \tag{8}$$

$$c_{\rm Br^{-},paB}^{(m)} = c_{\rm Br^{-},0}^{(m)} + c_{0}^{(3ar)} \left(N_{\rm AgBr,0}^{(T^{0})} - N_{\rm AgBr,paB}^{(T)} \right) + c_{\rm Ag',paB}^{(m)} N_{\rm AgBr,paB}^{(T)}.$$
(9)

Тот же экспериментальный материал позволил получить для каждого варианта синтеза графики функций $c_{Br^-,paB}^{(m)}(N_{AgBrpaB}^{(T)})$ и $c_{Ag',paB}^{(m)}(N_{AgBrpaB}^{(T)})$ при разных $c_{C\Gamma,paB}^{(m)}$ и *T* (их примеры даны на рис. 3). Такие графики в сочетании с уравнениями (8) и (9) служат главным средством эмпирического поиска условий синтеза {AgCl, AgBr}(т) с заданными $N_{AgBrpaB}^{(T)}$. **Четвертая глава** посвящена термодинамическому исследованию связи между переменными компонентных составов фаз и температурой в равновесных состояниях ГХС. Такое исследование носит комплексный характер и производится в несколько этапов, основными из которых являются: построение стехиометрических моделей внутрифазных химических превращений и межфазных массообменных процессов в ГХС в терминах базисных реакций [2], рассмотрение термодинамических законов равновесия последних, определение коэффициентов активностей фазовых компонентов в аналитической форме и установление температурных зависимостей констант равновесия.

Согласно представлениям об основных составных частях ГХС и *PhC-Mod* гидрохимического синтеза (см. выражения (1)–(4)), внутрифазное химическое превращение происходит только в жидкой фазе ж, тогда как межфазные массообменные процессы реализуются между парами фаз T_1^o и ж, T_2^o и ж, т и ж посредством двух транзитивных компонентов 4 – AgCl и 5 – AgBr.

Ниже приведены характерные части стехиометрической модели $r^{(m)}$ -Mod химического превращения в жидкой фазе ж – матрица стехиометрических коэффициентов $\left(v_{kr^{(m)}}^{(m)}\right)$ и множество стехиометрических уравнений базисных реакций $\{r^{(m)}\}$:

а также характерные части стехиометрических моделей $f^{(4)}$ -Mod и $f^{(5)}$ -Mod межфазных массообменных процессов по транзитивным компонентам 4 и 5 –

матрицы стехиометрических коэффициентов $\left(v_{4f^{(4)}}^{(\alpha)\bullet}\right)$ и $\left(v_{5f^{(5)}}^{(\alpha)\bullet}\right)$ и множества стехиометрических уравнений базисных реакций $\{f^{(4)}\}$ и $\{f^{(5)}\}$:

$$\left(\mathbf{v}_{4f^{(4)}}^{(\alpha)\bullet} \right) = \begin{pmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}, \qquad \left(\mathbf{v}_{5f^{(5)}}^{(\alpha)\bullet} \right) = \begin{pmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}, \tag{11}$$

$$\{f^{(4)}\} = \begin{cases} 1.^{(4)} & \text{AgCl}(\mathbf{T}_{1}^{0}) = \text{AgCl}(\mathbf{\pi}) \\ 2.^{(4)} & \text{AgCl}(\mathbf{\pi}) = \text{AgCl}(\mathbf{T}) \end{cases}, \quad \{f^{(5)}\} = \begin{cases} 1.^{(5)} & \text{AgBr}(\mathbf{T}_{2}^{0}) = \text{AgBr}(\mathbf{\pi}) \\ 2.^{(5)} & \text{AgBr}(\mathbf{\pi}) = \text{AgBr}(\mathbf{T}) \end{cases}.$$
(12)

Посредством композиции термодинамических законов равновесия базисных реакций $4^{(m)}$ и $5^{(m)}$, $2^{(4)}$ и $2^{(5)}$ получено исходное уравнение связи между переменными $c_{\rm Br^-,pab}^{(m)}$, $c_{\rm Cl^-,pab}^{(m)}$, $N_{\rm AgBr,pab}^{(T)}$ и T:

$$\left(\frac{c_{\rm Br^{-}}^{(m)}}{c_{\rm Cl^{-}}^{(m)}}\right)_{\rm pab} = \left(\frac{\gamma_{\rm Cl^{-}}^{c(m)}}{\gamma_{\rm Br^{-}}^{c(m)}}\right)_{\rm pab} \left(\frac{\gamma_{\rm AgBr}^{N({\rm T})}}{\gamma_{\rm AgCl}^{N({\rm T})}}\right)_{\rm pab} \frac{K_{5^{(m)}}^{c}\left(T,[c_{s}^{(m)}]\right)K_{2^{(4)}}^{cN}\left(T,[c_{s}^{(m)}]\right)}{K_{2^{(5)}}^{cN}\left(T,[c_{s}^{(m)}]\right)} \left(\frac{N_{\rm AgBr}^{({\rm T})}}{1-N_{\rm AgBr}^{({\rm T})}}\right)_{\rm pab}, (13)$$

где $\gamma_{Cl^-, paB}^{c(m)}$ и $\gamma_{Br^-, paB}^{N(T)}$, $\gamma_{AgBrpaB}^{N(T)}$ и $\gamma_{AgClpaB}^{N(T)}$ – коэффициенты активностей фазовых компонентов Cl⁻(ж) и Br⁻(ж), AgBr(т) и AgCl(т); K_{4}^c , и K_{5}^c , K_{2}^{cN} , и K_{2}^{cN} – термодинамические константы равновесия соответствующих базисных реакций (они зависят только от *T* и выбора единицы измерения концентраций [$c_s^{(m)}$]).

Дальнейшее преобразование исходного уравнения (13) включает в себя:

1) решение вопроса о зависимости отношения $\left(\gamma_{Cl^{-}}^{c(m)}/\gamma_{Br^{-}}^{c(m)}\right)_{pab}$ от $c_{Cl^{-}, pab}^{(m)}$ с помощью эмпирического правила Здановского [3]:

$$\left(\gamma_{\rm Cl^-}^{c(\mathfrak{m})} / \gamma_{\rm Br^-}^{c(\mathfrak{m})}\right)_{\rm pab} = A c_{\rm Cl^-, \, pab}^{(\mathfrak{m})} + B, \qquad (14)$$

где A, B – коэффициенты линейной функции ($A = -6,5 \cdot 10^{-5}$ м³/моль; B = 0,98);

2) доказательство применимости к твердым растворам {AgCl, AgBr}(т) модели регулярных растворов [4] путем термодинамического анализа изобарической диаграммы плавкости $T-N_{AgBr}$ для системы AgCl–AgBr (рис. 4) и выражение на этой основе зависимости $\left(\gamma_{AgBr}^{N(\tau)}/\gamma_{AgCl}^{N(\tau)}\right)_{\text{рав}}$ от T и $N_{AgBrpab}^{(\tau)}$:

$$\left(\gamma_{AgBr}^{N(T)}/\gamma_{AgCl}^{N(T)}\right)_{pab} = \exp\left[\epsilon^{(T)}\left(1 - 2N_{AgBrpab}^{(T)}\right)/RT\right],$$
(15)

где $\epsilon^{(T)}$ – мольная энергетическая характеристика регулярного твердого раство-

ра ($\epsilon^{(T)} = 2579$ Дж/моль), *R* – универсальная газовая постоянная;

3) выражение неизвестных констант равновесия через известные произведения растворимостей L_{AgCl}^{Nc} и L_{AgBr}^{Nc} индивидуальных AgCl(т°) и AgBr(т°) и отыскание зависимости отношения $L_{AgBr}^{Nc}/L_{AgCl}^{Nc}$ от *T* по литературным данным:

$$K_{5^{(\pi)}}^{c} K_{2^{(4)}}^{cN} / K_{4^{(\pi)}}^{c} K_{2^{(5)}}^{cN} = L_{AgBr}^{Nc} / L_{AgCl}^{Nc} = \exp(\beta_{0} + \beta_{1}T + \beta_{2}/T),$$
(16)

где β_0 , β_1 , β_2 – эмпирические коэффициенты ($\beta_0 = -9,17$, $\beta_1 = 0,0152$ K⁻¹, $\beta_2 = -263$ K).

Совместное рассмотрение (13)–(16) дает:

$$c_{\rm Br^{-}, paB}^{(m)} = c_{\rm Cl^{-}, paB}^{(m)} \left(A \, c_{\rm Cl^{-}, paB}^{(m)} + B \right) \exp \left[\beta_0 + \beta_1 T + \frac{\beta_2}{T} \right] \times \\ \times \exp \left[\frac{\varepsilon^{(T)}}{RT} \left(1 - 2 N_{\rm AgBr, paB}^{(T)} \right) \right] \frac{N_{\rm AgBr, paB}^{(T)}}{1 - N_{\rm AgBr, paB}^{(T)}}.$$
(17)

Уравнение (17) допускает прямой расчет одних переменных по другим. Оно используется в качестве одного из исходных уравнений при построении математической модели синтеза.

В этой же главе путем композиции термодинамических законов равновесия базисных реакций $6^{(m)}$, $8^{(m)}$, $10^{(m)}$ и $2^{(4)}$ с привлечением модели регулярных растворов (уравнение (15)) получено исходное уравнение связи между переменными $c_{Ag',pab}^{(m)}$, $c_{C\Gamma,pab}^{(m)}$, $N_{AgClpab}^{(T)}$ и *T*:

$$c_{\rm Ag',pab}^{(m)} = s_{\rm AgC(T_1^0)}^{(m)} \left(c_{\rm Cl^-,pab}^{(m)}, T \right) N_{\rm AgClpab}^{(T)} \exp\left[\frac{\varepsilon^{(T)}}{RT} \left(1 - N_{\rm AgClpab}^{(T)} \right)^2 \right],$$
(18)

где множитель $s_{AgC(\tau_1^0)}^{(\kappa)}(c_{C\Gamma,pab}^{(\kappa)}, T)$ имеет смысл коэффициента растворимости индивидуального AgCl(τ_1^0) в растворе {H₂O, HCl}(ж).

Аналитическое выражение функции $s_{AgC(\tau_1^o)}^{(m)}(c_{Cl^-,pab}^{(m)},T)$ было установлено путем математической обработки экспериментальных данных по зависимости

 $s_{AgC(r_1^0)}^{(m)}$ от $c_{Cl^-,0}^{(m)}$ и *T* (рис. 5) при условии, что $c_{Cl^-,0}^{(m)}$ близко к $c_{Cl^-,pab}^{(m)}$. Продуктом его подстановки в (18) является приведенное ниже уравнение:

$$c_{\rm Ag',pab}^{(m)} = \exp\left[b_0 + b_1 T + b_2 T^2\right] \left(c_{\rm CI^-,0}^{(m)}\right)^{(\alpha_0 + \alpha_1 T + \alpha_2 T^2)} N_{\rm AgClpab}^{(T)} \exp\left[\frac{\varepsilon^{(T)}}{RT} \left(1 - N_{\rm AgClpab}^{(T)}\right)^2\right], (19)$$

где b_i и α_i (i = 0, 1, 2) – температурные коэффициенты $(b_0 = 32,17, b_1 = -0,3588 \text{ K}^{-1}, b_2 = 6,621 \cdot 10^{-4} \text{ K}^{-2}, \alpha_0 = -3,306, \alpha_1 = 3,883 \cdot 10^{-2} \text{ K}^{-1}, \alpha_2 = -6,964 \cdot 10^{-5} \text{ K}^{-2}).$ Оно, как и (17), допускает прямой расчет одних переменных по другим и также используется при построении математической модели синтеза в качестве одного из исходных уравнений.

<u>В пятой главе</u> излагаются принципы построения математической модели гидрохимического синтеза {AgCl, AgBr}(т) по методу КВИГ, а также результаты её экспериментальной проверки.

В основе построения данной модели лежат балансовые уравнения (8), (9) и термодинамические уравнения связей (17), (19). Её обобщенная форма имеет

следующий вид:

$$c_{\rm Br^{-},0}^{(\rm m)} = \left(c_{\rm Cl^{-},0}^{(\rm m)} - c_{0}^{(\rm 3ar)} \left(N_{\rm AgBr,0}^{(\rm r^{0})} - N_{\rm AgBr,paB}^{(\rm r)}\right) \left[A\left(c_{\rm Cl^{-},0}^{(\rm m)} - c_{0}^{(\rm 3ar)} \left(N_{\rm AgBr,0}^{(\rm r^{0})} - N_{\rm AgBr,paB}^{(\rm r)}\right)\right] + B\right] \times \\ \times \exp\left(\beta_{0} + \beta_{1}T + \frac{\beta_{2}}{T}\right) \exp\left[\frac{\varepsilon^{(\rm r)}}{RT} \left(1 - 2N_{\rm AgBr,paB}^{(\rm r)}\right)\right] \frac{N_{\rm AgBr,paB}^{(\rm r)}}{1 - N_{\rm AgBr,paB}^{(\rm r)}} - c_{0}^{(\rm 3ar)} \left(N_{\rm AgBr,0}^{(\rm r^{0})} - N_{\rm AgBr,paB}^{(\rm r)}\right) - N_{\rm AgBr,paB}^{(\rm r)}\right) - N_{\rm AgBr,paB}^{(\rm r)} + b_{1}T + b_{2}T^{2}\left[\left(c_{\rm Cl^{-},0}^{(\rm m)}\right)^{(\alpha_{0}+\alpha_{1}T+\alpha_{2}T^{2})} \left(1 - N_{\rm AgBr,paB}^{(\rm r)}\right) \exp\left[\frac{\varepsilon^{(\rm r)}}{RT} \left(N_{\rm AgBr,paB}^{(\rm r)}\right)^{2}\right],$$

$$(20)$$

где $c_{\rm Br^-,0}^{(m)}$ играет роль функции, $N_{\rm AgB_{L}paB}^{(T)}$ – роль аргумента, $c_{\rm CI^-,0}^{(m)}$, $c_{0}^{(3ar)}$, $N_{\rm AgB_{L}0}^{(T^0)}$ и *T* – роль параметров, которые можно варьировать от опыта к опыту, остальные величины – роль известных постоянных. Она дает возможность при выбранных параметрах рассчитать $c_{\rm Br^-,0}^{(m)}$ для синтеза {AgCl, AgBr}(т) с требуемой $N_{\rm AgB_{L}paB}^{(T)}$.

Уравнение (20) по содержанию гипотез, выдвинутых в ходе его получения, охватывает собой следующие области допустимых значений аргумента и всех параметров: $N_{AgBr,pab}^{(T)} \in [0; 0,9], c_{CI^-,0}^{(\kappa)} \in [1000; 8000]$ моль/м³, $c_0^{(3ar)} \in (0; 140$ и более] моль/м³, $N_{AgBr,0}^{(T^0)} \in [0; 1], T \in [298; 358]$ К.

Предложенная математическая модель была подвергнута детальной экспериментальной проверке по всем трем вариантам синтеза. Оценка достоверности

Рис. 6. Зависимость $c_{Br^-,0}^{(m)}(N_{AgBr,paB}^{(r)})$ для гидрохимического синтеза {AgCl, AgBr}(т) по варианту 1: а) при T = 333 K, $c_{Cl^-,0}^{(m)} = 6000$ моль/м³ и $c_0^{(3ar)} \in [40; 140]$ моль/м³; б) при T = 298 K, $c_0^{(3ar)} = 120$ моль/м³ и $c_{Cl^-,0}^{(m)} \in [2000; 8000]$ моль/м³

Рис. 7. Зависимость $c_{Br^-,0}^{(m)}(N_{AgBr,paB}^{(r)})$ для гидрохимического синтеза {AgCl, AgBr}(т) по варианту 2: а) при T = 333 K, $c_{Cl^-,0}^{(m)} = 6000$ моль/м³ и $c_0^{(3ar)} \in [40; 140]$ моль/м³; б) при $c_{Cl^-,0}^{(m)} = 6000$ моль/м³, $c_0^{(3ar)} = 90$ моль/м³ и $T \in [333; 353]$ K

модели проводилась путем графического изображения в координатах $N_{AgBrpaB}^{(T)}$ и $c_{Br^{-},0}^{(m)}$ экспериментальных точек на фоне теоретических кривых (см. примеры на рис. 6, 7), а также путем вычисления относительных разностей

$$\delta\left(N_{\mathrm{AgBr,paB}}^{(\mathrm{T})}\right) = \left(N_{\mathrm{AgBr,paB}}^{(\mathrm{T})}(\mathrm{Teop}) - N_{\mathrm{AgBr,paB}}^{(\mathrm{T})}(\Im\mathrm{KCII})\right) * 100 / N_{\mathrm{AgBr,paB}}^{(\mathrm{T})}(\mathrm{Teop}), \%.$$

Результаты такой оценки показывают, что в каждом варианте синтеза величина $\delta(N_{AgBr,paB}^{(r)})$ не выходит за границы довольно узкого интервала значений [-3; 3] %. Это свидетельствует о хорошем согласии предлагаемой математической модели гидрохимического синтеза {AgCl, AgBr}(т) с действительностью.

Шестая глава касается вопросов получения монокристаллов для ИКволоконной оптики на основе твердых растворов {AgCl, AgBr}(т), синтезированных гидрохимическим методом КВИГ.

Показано, что упомянутые твердые растворы позволяют выращивать монокристаллы из расплавов методом Бриджмена-Стокбаргера в обычной воздушной среде без каких-либо побочных процессов. Качество полученных монокристаллов оценивалось по их важнейшим оптическим свойствам (линейному коэффициенту поглощения τ , спектральному пропусканию *P*, показателю преломления *n*) и механической пластичности. Величина τ измерялась методом лазерной калориметрии, величины *P* и *n* – методом ИК-Фурье спектрометрии. Установлено, что монокристаллы проявляют достаточно высокую прозрачность в широком диапазоне ИК волн с λ от 2 до 40 мкм (при $\lambda = 10,6$ мкм и $N_{AgBr,pab}^{(T)} = 0,75$ наблюдается следующая картина: $\tau = 0,006$ м⁻¹, P = 80 %, n = 2,20). Они обладают также достаточно высокой пластичностью, которая обеспечивает экструзию гибких оптических волокон диаметром от 0,5 до 2 мм.

выводы

1. Разработан новый метод гидрохимического синтеза твердых растворов хлорид-бромида серебра как сырья при выращивании монокристаллов для ИКволоконной оптики. Он основан на изотермическом преобразовании индивидуальных галогенидов AgCl(т[°]) и AgBr(т[°]) в твердый раствор {AgCl, AgBr}(т) под воздействием хлористо- и бромистоводородной кислот. Метод позволяет получать твердые растворы с любым заданным содержанием компонентов, отличается высокой управляемостью и простотой в технологической реализации.

2. Изготовлена лабораторная установка для проведения синтеза в контролируемых условиях. Предложен химико-гравиметрический метод определения мольной доли $N_{AgBr,pab}^{(T)}$ в твердом растворе (погрешность не более 1 %). Формирование твердых растворов подтверждено рентгенофазовым анализом.

3. Показано, что твердый раствор является продуктом фазового и химического превращений в гидрохимической системе. Получена композиция балансовых уравнений, связывающая важнейшие параметры синтеза, такие как $c_{X^-,0}^{(m)}$ и $c_{X^-,pab}^{(m)}$, $N_{AgX,0}^{(T^0)}$ и $N_{AgX,pab}^{(T)}$, $c_{Ag',pab}^{(m)}$, $\tilde{c}_{X',pab}^{(m)}$ (X=Cl, Br). Она служит одним из исходных уравнений при математическом моделировании синтеза.

4. Экспериментальное исследование соответствия между начальными $c_{X^-,0}^{(\pi)}$, $N_{AgX,0}^{(\tau^0)}$, $c_0^{(3ar)}$ и равновесными $c_{X^-,pab}^{(\pi)}$, $N_{AgX,pab}^{(\tau)}$, $c_{Ag',pab}^{(\pi)}$, $\tilde{c}_{X',pab}^{(\pi)}$ параметрами синтеза в композиционном балансовом уравнении при разных температурах T показывает, что твердые растворы образуются в широких диапазонах значений задаваемых величин: $T \in [298; 353]$ K, $c_{CI^-,0}^{(\pi)} \in [1000; 8000]$ моль/м³, $c_{Br^-,0}^{(\pi)} \in [0; 500]$ моль/м³, $N_{AgB\tau,0}^{(\tau^0)} \in [0; 1]$, $c_0^{(3ar)} \leq 700$ моль/м³; параметр $\tilde{c}_{X',pab}^{(\pi)}$ может не учиты-

ваться при материальных расчетах из-за его малости; функции $c_{Br^-,paB}^{(m)}(N_{AgBrpaB}^{(r)})$ и $c_{Ag',paB}^{(m)}(N_{AgBrpaB}^{(r)})$ имеют соответственно монотонно возрастающий и монотонно убывающий характер; оптимальная продолжительность синтеза $\Delta t_{our} \leq 3$ час.

5. На основе термодинамических законов равновесия установлены связи между равновесными концентрациями фазовых компонентов и температурой в форме двух функций $c_{Br^-,pab}^{(m)}(c_{C\Gamma^-,pab}^{(m)}, N_{AgBrpab}^{(T)}, T)$ и $c_{Ag',pab}^{(m)}(c_{C\Gamma^-,pab}^{(m)}, N_{AgBrpab}^{(T)}, T)$, допускающих прямые расчеты. Они включают в себя аналитические выражения для коэффициентов активностей компонентов в твердой и жидкой фазах, полученные с помощью модели регулярных растворов и правила Здановского.

6. Построена математическая модель гидрохимического синтеза, которая отражает его закономерности с термодинамических позиций. Она обеспечивает теоретический расчет условий получения твердых растворов {AgCl, AgBr}(т) с заданными составами в диапазоне $0 < N_{AgBr, pab}^{(T)} \leq 0.9$. Расхождение между расчетными и экспериментальными значениями $N_{AgBr, pab}^{(T)}$ не превышает 3 %.

7. Показано, что твердые растворы, синтезированные по разработанному гидрохимическому методу, выдерживают нагревание до плавления в воздушной среде и позволяют получать из расплава монокристаллы, которые по прозрачности и пластичности удовлетворяют требованиям ИК-волоконной оптики.

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

1. Пат. 2160795 Российская Федерация. Способ получения высокочистых веществ / Л.В. Жукова, В.В. Жуков, Г.А. Китаев. Опубл. 05.12.2000. Бюл. № 35.

2. Булатов Н.К., Лундин А.Б. Термодинамика необратимых физикохимических процессов. М.: Химия, 1984. 336 с.

3. Вопросы физической химии растворов электролитов / под ред. Г.И. Микулина. Л.: Химия, 1968. 418 с.

4. Пригожин И., Дефэй Р. Химическая термодинамика. М.: БИНОМ. Лаборатория знаний, 2010. 533 с.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ РАБОТЫ

1. Гребнева А.А., Булатов Н.К., Жукова Л.В. Гидрохимический синтез твердых растворов AgCl_xBr_{1-x} // Неорганические материалы. 2010. Т. 46. № 6. С. 751-756.

2. Булатов Н.К., Гребнева А.А., Жукова Л.В. Применение модели регулярных растворов для описания и расчета равновесия кристаллы-расплав в системе AgCl–AgBr // Расплавы. 2009. № 6. С. 86-93.

3. Гребнева А.А., Булатов Н.К., Жукова Л.В. Гидрохимический синтез высокочистых твердых растворов {AgCl, AgBr}(т) как сырья в производстве нанокристаллических ИК-волокон // Перспективные материалы. 2010. Выпуск 9. С. 86-91.

4. Булатов Н.К., Гребнева А.А., Жукова Л.В. Нанокристаллические ИКволокна на основе твердых растворов {AgCl, AgBr}(т): гидрохимический синтез сырья для их производства // Научно-технический журнал «Фотонэкспресс». 2009. № 6 (78). С. 153.

5. Булатов Н.К., Гребнева А.А., Жукова Л.В. Термодинамическое моделирование гидрохимического синтеза твердых растворов {AgCl, AgBr}(т) // Деп. в ВИНИТИ. 2009. № 436-В2009. 22 с.

6. Булатов Н.К., Жукова Л.В., Гребнева А.А. Гидрохимический способ получения галогенидов металлов и их твердых растворов: учебное пособие. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2009. 85 с.

7. Гребнева А.А., Булатов Н.К., Жукова Л.В. Твердые растворы {AgCl, AgBr}(т) в производстве нанокристаллических ИК-волокон, их гидрохимический синтез // Сб. трудов IX Международной конференции «Прикладная оптика-2010». СПб, 2010. Т.2 «Оптические технологии и материалы». С. 110-113.

8. Гребнева А.А., Булатов Н.К., Жукова Л.В. Моделирование связи между равновесными составами расплава и твердой фазы при выращивании монокристаллов хлорид-бромида серебра для ИК-волоконной оптики // Сб. трудов VIII Международной конференции «Прикладная оптика-2008» в рамках V Международного оптического конгресса «Оптика –ХХІ век». СПб, 2008. Т.2 «Оптические технологии и материалы». С. 138-142.

9. Гребнева А.А., Булатов Н.К., Жукова Л.В., Девятьярова А.Л. Фазовокомпонентная модель гидрохимического преобразования AgCl(т) в твердый раствор {AgCl, AgBr}(т) // Научные труды XV Международной научной конференции молодых ученых: сб. статей. В 3 ч. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2009. С. 223-226.

10. Гребнева А.А., Булатов Н.К., Жукова Л.В.Условия получения твердых растворов {AgCl, AgBr}(т) гидрохимическим преобразованием индивидуального AgCl(т) // Научные труды XVI Уральской Международной конференции молодых ученых по приоритетным направлениям развития науки и техники: сб. статей. В 3 ч. Екатеринбург: УГТУ-УПИ, 2009. Ч. 1. С. 116-118.

11. Гребнева А.А., Булатов Н.К., Жукова Л.В. Кинетическое исследование гидрохимического синтеза твердых растворов {AgCl, AgBr}(т) из индивидуального AgBr(т) // Научные труды XVII Международной конференции молодых ученых по приоритетным направлениям развития науки и техники: сб. статей. В 3 ч. Екатеринбург: УГТУ-УПИ, 2010. Ч. З. С. 389-392.

12. Гребнева А.А., Булатов Н.К., Жукова Л.В. Дискретно-структурная модель гидрохимических систем при синтезе твердых растворов {AgCl, AgBr}(т) // Научные труды XVIII Международной конференции молодых ученых по приоритетным направлениям развития науки и техники: сб. статей. В 3 ч. Екатеринбург: УГТУ-УПИ, 2010. Ч. 2. С. 319-322. 13. Гребнева А.А., Булатов Н.К., Жукова Л.В. Химико-гравиметрический метод определения компонентного состава твердых растворов хлорид-бромида серебра // Научные труды XIV отчетной конференции молодых ученых УГТУ-УПИ: сб. статей. В 3 ч. Екатеринбург: УГТУ-УПИ, 2008. Ч. 3. С. 84–86.

14. Гребнева А.А., Булатов Н.К., Жукова Л.В. Дискретно-структурная модель физико-химических систем // Проблемы теоретической и экспериментальной химии: тез. докл. XIX Российской молодежной научной. конференции. Екатеринбург: Изд-во Урал. ун-та, 2009. С. 335-336.

15. Гребнева А.А., Булатов Н.К., Жукова Л.В. Термодинамическое моделирование связи между равновесными составами фаз при гидрохимическом синтезе твердых растворов {AgCl, AgBr}(т) // Проблемы теоретической и экспериментальной химии: тез. докл. XX Росссийской молодежной научной конференции. Екатеринбург: Изд-во Урал. ун-та, 2010. С. 242-243.

16. Гребнева А.А., Булатов Н.К., Жукова Л.В. Определение термодинамических констант равновесия межфазных реакций при гидрохимическом синтезе твердых растворов {MX}(т) (M = Ag, Tl; X = Cl, Br, I) // Проблемы теоретической и экспериментальной химии: тез. докл. XXI Российской молодежной научной конференции. Екатеринбург: Изд-во Урал. ун-та, 2011. С. 297-298.

17. Гребнева А.А., Булатов Н.К., Жукова Л.В. К выбору условий получения монокристаллов хлорид-бромида серебра для ИК-волоконной оптики // Тезисы докладов XIII Национальной конференции по росту кристаллов НКРК-2008. М.: ИК РАН, 2008. С. 59.

18. Булатов Н.К., Жукова Л.В., Гребнева А.А. Термодинамический расчет равновесных составов фаз при гидрохимическом получении высокочистых галогенидов таллия для ИК-волоконной оптики / Деп. в ВИНИТИ, 2007, № 708-В2007. 21 с.

19. Гребнева А.А., Жукова Л.В., Булатов Н.К. Исследование связи между составами фаз при гидрохимическом получении твердых растворов хлоридбромида серебра // Тезисы студ. науч. работ (XII Обл. конкурс студ. НИР «Научный Олимп»). Екатеринбург: Изд-во Урал. ун-та, 2008. С. 41-43.

20. Гребнева А.А., Булатов Н.К., Жукова Л.В. Разработка технологии гидрохимического синтеза высокочистых твердых растворов галогенидов серебра // Студент и научно-технический прогресс: регион. сб. тез. докл. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2007. С. 223.

21. Патент РФ № 2413253 «Оптический монокристалл». Корсаков А.С., Гребнева А.А., Жукова Л.В., Чазов А.И., Булатов Н.К. Заявл. 24.02.2009. Опубл. 27.02.2011. Бюл. № 6.

Подписано в печать 01.11. 2012 г. Формат 60×84 1/16 Бумага писчая. Плоская печать. Усл. печ. л. 1,0 Уч.-изд. л. 1,0. Тираж 100 экз. Заказ

> Ризография НИЧ УрФУ 620002, Екатеринбург, ул. Мира, 19