На правах рукописи

ИЛЬИНА ЕВГЕНИЯ АЛЕКСЕЕВНА

ЛИТИЙ-ПРОВОДЯЩИЕ ЭЛЕКТРОЛИТЫ НА ОСНОВЕ $Li_7La_3Zr_2O_{12}$

Специальность 02.00.05 – электрохимия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2013

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН), г. Екатеринбург

Научный руководитель: Баталов Николай Николаевич, кандидат химических наук, старший научный сотрудник, ФГБУН Институт высокотемпературной электрохимии Уральского отделения Российской академии наук, заведующий лабораторией

Официальные оппоненты: Анимица Ирина Евгеньевна, доктор химических наук, старший научный сотрудник, ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», доцент

Шкерин Сергей Николаевич,

доктор химических наук, ФГБУН Институт высокотемпературной электрохимии Уральского отделения Российской академии наук, главный научный сотрудник

Ведущая организация: ФГБУН Институт химии твердого тела Уральского отделения Российской академии наук, г. Екатеринбург

Защита состоится «25» декабря 2013 г. в 15³⁰ часов на заседании диссертационного совета Д 004.002.01 при Институте высокотемпературной электрохимии УрО РАН по адресу: г. Екатеринбург, ул. Академическая, 20, конференц-зал.

С диссертацией можно ознакомиться в Центральной научной библиотеке УрО РАН. Ваши отзывы в 2-х экземплярах, подписанные и заверенные гербовой печатью, с датой подписания, просим высылать по адресу: 620990, Екатеринбург, ул. Академическая, 20, ИВТЭ УрО РАН, ученому секретарю диссертационного совета Нине Павловне Кулик (e-mail: n.p.kulik@ihte.uran.ru; факс (343) 374-59-92).

Автореферат разослан <u>« 22 »</u> ноября 2013 г.

Ученый секретарь Диссертационного совета, кандидат химических наук

Кулик Н.П.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Твердые электролиты широко используются в устройствах высокотемпературной электрохимической энергетики. Особое место среди этих материалов занимают соединения с проводимостью по катионам лития, необходимые для создания литиевых источников тока, превосходящих по энергоемкости все известные электрохимические системы. Твердые литий-проводящие электролиты перспективны для низкотемпературных полностью твердофазных использования В И среднетемпературных источниках тока с расплавленным литиевым анодом, а также в качестве литий-проводящей фазы-загустителя для расплавленного солевого электролита литиевых тепловых источников тока.

В настоящее время найдены соединения, обладающие высокой литиевой проводимостью при комнатной температуре: LiPON $(3,3\cdot10^{-3}$ Cm/cm [1]), Li_{3,4}Si_{0,4}P_{0,6}S₄ (6,4·10⁻⁴ Cm/cm [2]). Однако твердые электролиты, до сих пор не нашли коммерческого применения в литиевых источниках тока массового выпуска. Проблема заключается в том, что фазы с высокой литий-ионной проводимостью, как правило, легко восстанавливаются металлическим литием, поэтому актуальной задачей является поиск электролита, обладающего как высокой литий-ионной проводимостью, так и устойчивостью к металлическому литию.

Одним из твердых электролитов, обладающих высокой литий-ионной проводимостью в сочетании с устойчивостью к металлическому литию, является недавно обнаруженное соединение $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$ (LLZ) [3]. LLZ обладает структурой граната и имеет две кристаллические модификации: кубическую и тетрагональную, однако их структура (а, следовательно, и механизм проводимости) к настоящему времени детально не исследованы. Установлено, что проводимость кубического LLZ при комнатной температуре на несколько порядков выше, чем тетрагонального, однако стабилизация кубической фазы в этих условиях проблематична и требует

специального исследования, тогда как тетрагональную модификацию достаточно легко синтезировать. Кроме того, нет сведений об области гомогенности LLZ; не изучено влияние нарушения стехиометрии по литию на транспортные свойства обеих модификаций. Поиск ответов на эти является актуальной задачей и интересен вопросы не только c фундаментальной, но и с практической точки зрения, так как в результате будет получен новый твердый электролитический материал с требуемым комплексом физико-химических свойств, перспективный ДЛЯ использования в устройствах электрохимической энергетики широкого температурного диапазона.

Работа выполнена в соответствии с планом научных исследований ИВТЭ УрО РАН в рамках «Программы научных исследований государственных академий наук на 2008-2012 годы». Актуальность работы и важность проблематики подтверждаются поддержкой программы ОХНМ РАН № 2 «Создание новых металлических, керамических, стекло-, полимерных и композиционных материалов» (№ 12-Т-3-1007), программы Президиума РАН «Химические аспекты энергетики» (№ 12-П-3-1012) и гранта Президиума УрО РАН – «Арктика» (№ 12-3-1-006).

Цель работы: установление взаимосвязи состава, структуры и транспортных свойств твердых электролитов на основе цирконата лантаналития (LLZ) тетрагональной и стабилизированной алюминием кубической модификаций при варьировании содержания лития и алюминия, а также оценка перспектив использования LLZ в литиевых источниках тока.

Для достижения поставленной цели решались следующие задачи:

1. Синтез LLZ тетрагональной модификации с различной литиевой стехиометрией. Подбор условий синтеза и получения керамических образцов с максимальной плотностью.

2. Поиск условий стабилизации кубической модификации цирконата лантана-лития путем гетеровалентного замещения циркония на алюминий.

Синтез образцов кубического LLZ с различным содержанием лития и алюминия.

3. Аттестация структуры и фазового состава синтезированных образцов. Установление области гомогенности по литию для тетрагональной и стабилизированной кубической модификаций LLZ.

4. Исследование транспортных свойств полученных соединений в интервале температур 20 – 230 °C. Анализ влияния содержания лития и алюминия на перенос Li⁺ в тетрагональной и стабилизированной кубической модификациях LLZ.

5. Определение токов обмена на границе Li| Li₇La₃Zr₂O₁₂.

Научная новизна:

1. Впервые установлены границы области гомогенности по литию для тетрагональных электролитов Li_xLa₃Zr₂O_{8,5+0,5x}.

2. Впервые обнаружен эффект увеличения проводимости с ростом содержания сверхстехиометрического лития в тетрагональных электролитах Li_xLa₃Zr₂O_{8,5+0,5x}.

3. Впервые исследованы транспортные свойства стабилизированных кубических электролитов $Li_8La_3Zr_{2-0,75y}Al_yO_{12,5}$ и $Li_9La_3Zr_{2-0,75y}Al_yO_{13}$, содержащих сверхстехиометрическое количество лития.

4. Предложен механизм влияния сверхстехиометрического лития на ионный перенос в тетрагональной и стабилизированной кубической модификациях LLZ.

5. Впервые рассчитаны термодинамические характеристики Li₇La₃Zr₂O₁₂: энтальпия образования, теплоемкость, приращение энтальпии, энтропия и свободная энергия Гиббса образования данного соединения в интервале температур 298 – 800 К.

Практическая значимость:

1. Получен новый литий-проводящий электролит с проводимостью при комнатной температуре 1,3·10⁻⁴ См/см и предложен энергоэффективный

способ его синтеза, позволяющий снизить температуру и время термической обработки по сравнению с традиционным керамическим методом (Патент РФ № 2483398).

2. Предложен цитрат-нитратный метод синтеза, пригодный для получения электролитов на основе LLZ с тетрагональной и кубической структурами при варьировании их состава.

3. Разработана методика получения керамики на основе LLZ методом изостатического прессования.

4. Показана пригодность LLZ для практического использования в среднетемпературных литиевых источниках тока.

На защиту выносятся:

1. Разработка методики синтеза твердых электролитов на основе Li₇La₃Zr₂O₁₂ по золь-гель технологии и получения керамики из данного материала.

2. Результаты синтеза твердых электролитов на основе Li₇La₃Zr₂O₁₂ тетрагональной и кубической (стабилизированной алюминием) модификаций, аттестация их структуры, фазового и химического состава.

3. Экспериментальные результаты исследования транспортных свойств тетрагональных (Li_xLa₃Zr₂O_{8,5+0,5x}, x=6-10) и кубических (Li_xLa₃Zr₂-_{0,75y}Al_yO_{8,5+0,5x}, x=7-9, y=0,05-0,30) твердых электролитов в интервале температур 20 – 230 °C.

4. Результаты измерения токов обмена на межфазной границе Li|Li₇La₃Zr₂O₁₂.

Апробация работы. Основные результаты работы были доложены и обсуждены на VIII Международной конференции «Фундаментальные 2011), XII проблемы электрохимической энергетики» (Саратов, конференции «Фундаментальные международной проблемы преобразования энергии в литиевых электрохимических системах» (Краснодар, 2011), Научно-практической конференции «Актуальные

проблемы и перспективы развития литиевых ХИТ» (Алматы, 2012), II Всероссийской молодёжной конференции «Успехи химической физики» (Черноголовка, 2013), XVI Российской конференции «Физическая химия и электрохимия расплавленных и твердых электролитов» (Екатеринбург, 2013).

Публикации. По материалам диссертации опубликованы 10 печатных работ, в том числе 1 патент, 3 статьи в журналах, рекомендованных ВАК и 6 тезисов докладов российских и международных конференций.

Личный вклад автора. Синтез и аттестация всех исследованных в работе соединений, измерение их транспортных характеристик, разработка методики синтеза и получения керамики LLZ, математическая обработка полученных результатов, обобщение и формулировка основных выводов выполнены лично автором. Съемка дифрактограмм выполнена к.х.н. Антоновым Б.Д. (ИВТЭ УрО РАН), электронная микроскопия – к.х.н. Малковым В.Б. (ИВТЭ УрО РАН), термический анализ – к.х.н. Резницких О.Г. (ИВТЭ УрО РАН), измерения токов обмена на границе LilLZ – к.х.н. Шевелиным П.Ю. (ИВТЭ УрО РАН). Нейтронографические исследования были выполнены и обсуждены с к.х.н. Ворониным В.И. (ИФМ УрО РАН). Исследования методом ядерного магнитного резонанса были выполнены Невмывако Р.Д. и обсуждены с д.х.н. Денисовой Т.А. (ИХТТ УрО РАН). Гидравлическое прессование образцов было проведено Александровым А.В. (ИФМ УрО РАН). Термодинамическое моделирование выполнено совместно с к.х.н. Расковаловым А.А. (ИВТЭ УрО РАН). Обсуждение полученных результатов и подготовка научных публикаций проведено автором совместно с научным руководителем, к.х.н. Баталовым Н.Н. при участии к.х.н. Расковалова А.А.

Объем и структура работы. Диссертация состоит из введения, литературного обзора (глава 1), методик исследования (глава 2),

результатов и их обсуждения (главы 3 – 5), заключения, выводов и списка цитируемой литературы (107 наименований). Работа изложена на 130 страницах и включает 64 рисунка и 10 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ

Во введении дано обоснование актуальности темы, научной новизны и практической значимости диссертационной работы; приведена информация об объеме и структуре работы.

В главе 1 описаны классы литий-проводящих твердых электролитов и их особенности. подробно Более рассмотрено несколько классов сложнооксидных кристаллических твердых литий-ионных проводников с различной структурой, которые представляют интерес как потенциальные твердые электролиты для литиевых электрохимических устройств. Детально описаны транспортные свойства соединений ряда с гранатоподобной структурой, в том числе Li₇La₃Zr₂O₁₂. Проведен анализ литературных сведений об условиях получения, структурных особенностях, транспортных свойствах физико-химических И гранатов различных модификаций кристаллических на основе $Li_7La_3Zr_2O_{12}$ различных модификаций, включая допированный LLZ. Показано, что в литературе нет сведений о стехиометрии по литию твердых электролитов на основе LLZ. Сформулирована постановка задачи исследования и обоснован выбор объектов исследования.

В главе 2 даны описания методик синтеза и аттестации образцов. Твердый электролит стехиометрического состава Li₇La₃Zr₂O₁₂ получен твердофазным и цитрат-нитратным методами синтеза. Для синтеза электролитов с различным содержанием лития, тетрагональных Li_xLa₃Zr₂O_{8,5+0,5x} (x = 6-10) и стабилизированных алюминием кубических Li_xLa₃Zr_{2-0,75y}Al_yO_{8,5+0,5x} (x=7-9; y=0,05-0,30), использован цитрат-нитратный метод синтеза. Рентгенофазовый анализ (РФА) образцов проводили на дифрактометре

Rigaku с вертикальным гониометром, интервал углов рассеяния 20 от 10 до 70°, Си-К_а излучение. <u>Нейтронографические измерения</u> проводили на дифрактометре D7a с высокой разрешающей способностью реактора ИВВ 2M, в интервале углов 20 от 10 до 125° с шагом 0,05°. Растровую электронную микроскопию (РЭМ) осуществляли с помощью электронного микроскопа JSM-5900 (LV) в режиме вторичных электронов. Оптические фотографии порошков и поверхности керамических образцов были получены на микроскопе B100B-MS-P (AMSCOPE, США) с 4х- и 10-Съёмку микрофотографий кратными объективами. проводили В отраженном свете, в светлом поле. Распределение частиц по размеру дифракционного с помощью лазерного определяли анализатора Malvern Mastersizer 2000. гранулометрического состава Измерения теплоёмкости проводили на дифференциальном сканирующем калориметре DSK 204 F1 Phoenix Netzsch, продуваемом аргоном со скоростью 30 мл/мин, в интервале температур 35 – 500 °С. Электрическое сопротивление образцов измеряли методом импедансной спектроскопии (ИСС) в двухэлектродной ячейке с необратимыми электродами в диапазоне частот 12 Гц – 100 кГц на измерителе иммитанса LCR – 819 (Goodwill instruments, Тайвань) в температурном интервале 25 – 350 °C. Измерения сопротивления ячейки Li|LLZ|Li проводили c использованием модульной электрохимической станции AutoLab 302N (Metrohm, Нидерланды) в частотном диапазоне от 1 Гц до 300 кГц. Статические спектры ядерного магнитного резонанса (ЯМР) были сняты в температурном интервале от -150 до 150 °C с помощью спектрометра широких линий высокого разрешения BS-487B «Tesla» с рабочей частотой 34 МГц. Расчет термодинамических параметров $Li_7La_3Zr_2O_{12}$ выполнен методом термодинамического моделирования (TM) с использованием программного комплекса ASTRA.

Глава 3 посвящена исследованию транспортных и термодинамических свойств базового соединения – тетрагонального Li₇La₃Zr₂O₁₂, а также оптимизации методов синтеза твердых электролитов на основе данного соединения и разработке методики получения керамики. Кроме того, в главе дана оценка возможности применения тетрагонального LLZ в химических источниках тока с литиевым анодом.

Твердый электролит стехиометрического состава Li₇La₃Zr₂O₁₂ был технологиям. синтезирован ПО твердофазной И цитрат-нитратной Комбинацией (седиментационный методов анализ, оптическая И электронная микроскопия) сопоставлены размер и морфология частиц, полученных двумя способами синтеза. Показано, что оптимальным является цитрат-нитратный метод синтеза LLZ, так как он позволяет получить однородный по гранулометрическому составу продукт со средним размером частиц 8 мкм, снизив при этом температуру (с 1250 °C до 900 °C) и время отжига (с 10 ч до 5 ч) по сравнению с твердофазным синтезом. Показано, что полученный продукт является оптимальным сырьем для изготовления керамики LLZ методом изостатического прессования (метод горячего прессования не использовали во избежание потерь лития). При давлении 500 МПа и последующем отжиге в течение 1 ч при 1180 °C была достигнута максимальная плотность керамики LLZ, которая составляла ~ 82 % от теоретической. Пористость образцов, определённая по намоканию в керосине, является закрытой, что позволяет использовать такую керамику в качестве твердого электролита/сепаратора электрохимических для устройств.

Рассчитаны термодинамические параметры стехиометрического $Li_7La_3Zr_2O_{12}$ с помощью аддитивных методов и термодинамического моделирования [4]. Методом ДСК измерена температурная зависимость изобарной теплоемкости тетрагонального LLZ, C_p . Показано, что расчетные значения теплоемкости близки к экспериментально полученным, что подтверждает достоверность расчетов C_p (табл. 1).

Таблица 1

Рассчитанные термодинамические характеристики Li₇La₃Zr₂O₁₂: C_p – изобарная теплоёмкость, S – энтропия, H-H₀ – приращение энтальпии, $\Delta G_{\text{обр.}}$ – энергия Гиббса образования

Τ,	<i>S</i> ,	$H-H_0,$	$\Delta G_{o \delta p.},$	<i>C_p</i> , расчёт,	С _р , эксперимент,
K	Дж/(К·моль)	кДж/моль	кДж	Дж/(К·моль)	Дж/(К·моль)
298	423,5	72,65	-6 612,11	464,5	-
300	426,4	73,51	-6 609,78	466,1	-
400	569,8	123,53	-6 483,89	526,6	515,7
500	691,2	177,97	-6 356,22	559,8	550,3
600	795,4	235,18	-6 226,43	583,4	565,2
700	886,9	294,53	-6 097,24	603,4	600,0
800	968,7	355,83	-5 968,78	622,5	-

С установленных термодинамических характеристик помощью методом ТМ оценена устойчивость твердого электролита Li₇La₃Zr₂O₁₂ к воздуху, CO₂, H₂O и металлическому литию. Согласно расчетам, LLZ термодинамически не устойчив к указанным веществам. Однако результаты РЭМ, РФА и измерения проводимости указывают на отсутствие изменений свойств материала при его хранении на воздухе в течение 12 суток при 25 °С. При ежедневном циклировании электрохимической ячейки Li|LLZ|Li в течение 1 месяца при комнатной температуре сопротивление не изменялось, что говорит об устойчивости LLZ к металлическому литию; визуальные и микроскопические исследования подтверждают данный вывод. Расхождение экспериментальных и термодинамических данных может быть обусловлено тем, что в действительности существуют кинетические затруднения взаимодействия LLZ с компонентами воздуха и металлическим литием. Это обстоятельство делает LLZ пригодным для практического применения в электрохимических устройствах с металлическим литием.

Рис. 1. Температурные зависимости проводимости Li₇La₃Zr₂O₁₂ в координатах Аррениуса, измеренные в режимах нагрева и охлаждения для двух параллелей.

Транспортные свойства тетрагонального твердого электролита стехиометрического состава Li₇La₃Zr₂O₁₂ были исследованы методом электрохимического импеданса в интервале 25 – 350 °C. Во всем изученном зависимости общей интервале температур ионной проводимости в координатах Аррениуса являются прямолинейными, что указывает на отсутствие фазовых переходов (рис.1). На зависимостях, полученных при измерениях на воздухе в режимах нагрева и охлаждения, гистерезиса не наблюдается; это говорит об отсутствии влияния на электропроводность адсорбированной Измерения воды. электронной составляющей проводимости при комнатной температуре и при 500 °C показали, что доля электронной проводимости в обоих случаях пренебрежимо мала (≤0,001 %).

Методом электрохимического импеданса в интервале 25 - 475 °C измерены токи обмена на межфазной границе Li|Li₇La₃Zr₂O₁₂. Из рис. 2 видно, что с повышением температуры выше температуры плавления лития (180,5 °C) электрохимическая активность на границе Li|LLZ начинает быстро расти и при температурах выше 350 °C токи обмена достигают значений 200 – 400 мA/см². Такие величины достаточны для практического использования LLZ в среднетемпературных химических источниках тока.

Рис. 2. Зависимость плотности тока обмена на границе Li|Li₇La₃Zr₂O₁₂ от температуры.

Глава 4 посвящена поиску возможностей улучшения транспортных характеристик тетрагонального LLZ путем изменения содержания лития в данной фазе, так как известно, что структурный тип граната позволяет варьировать содержание катиона щелочного металла. При этом исходили из предположения, что литий-ионную проводимость можно увеличить за счет введения дополнительных носителей заряда (сверхстехиометрического лития) в структуру тетрагональной модификации LLZ. В связи с этим, проблема определения границ области возникает гомогенности тетрагонального LLZ по литию. С этой целью цитрат-нитратным методом были получены образцы LLZ номинального состава Li_xLa₃Zr₂O_{8,5+0,5x} в широком диапазоне значений *x*=6-10, которые и послужили объектами исследования.

Для установления фазового состава образцов $Li_xLa_3Zr_2O_{8,5+0,5x}$ использовали комбинацию методов РФА и нейтронографии. Результаты РФА показали, что образцы номинального состава $Li_6La_3Zr_2O_{11.5}$ оказались двухфазными (LLZ + $La_2Zr_2O_7$), $Li_{10}La_3Zr_2O_{13.5}$ содержали неидентифицированную примесь, тогда как все остальные образцы были однофазны и обладали структурой тетрагонального LLZ (рис. 3). Таким образом, тетрагональная можно заключить. что модификация $Li_xLa_3Zr_2O_{8.5+0.5x}$ существует в интервале концентраций лития *x*=7-9.

Рис. 3. Дифрактограммы твердых электролитов номинального состава $Li_xLa_3Zr_2O_{8.5+0.5x}$ в интервале *x*=6-10).

К сожалению, метод РФА недостаточно чувствителен к фазовому составу соединений лития из-за малой амплитуды рассеяния рентгеновских лучей атомами Li, в особенности, на фоне тяжелых атомов, таких как La. Поэтому данные РФА были дополнены результатами нейтронографических исследований, лишенных указанного недостатка. Было обнаружено, что образцы $Li_xLa_3Zr_2O_{8,5+0,5x}$ с x=7-9, гомогенные по данным РФА, в действительности содержат примесную фазу – Li_2CO_3 . Присутствие карбоната лития, вероятнее всего, является следствием взаимодействия компонентов реакционной смеси с углекислым газом при синтезе LLZ на воздухе.

Несмотря на высокую чувствительность нейтронографии к наличию примесей, данный метод малопригоден для их количественного

определения. Поэтому для установления массовой доли карбоната лития в синтезированных твердых электролитах был использован простой и чувствительный метод – волюмометрия. Он основан на измерении объема выделившегося углекислого газа, В результате взаимодействия исследуемого материала с кислотой. При тестировании метода в качестве эталонных образцов использовали карбонаты щелочных металлов квалификации х.ч. (Li_2CO_3 , Na_2CO_3 , K_2CO_3), а также их искусственные инертным веществом (SiO₂). Относительная погрешность смеси с определения объема углекислого газа не превышала 3 %. Твердые номинального состава $Li_7La_3Zr_2O_{12}$, $Li_8La_3Zr_2O_{12}$, электролиты И Li₉La₃Zr₂O₁₃ содержат 1,3±0,1, 2,0±0,1 и 3,5±0,1 % (масс.) Li₂CO₃, соответственно. Количественное определение массовой доли карбоната лития в образцах позволяет внести уточнения в химические формулы исследуемых твердых электролитов. Согласно расчетам, составы с номинальными значениями x=7, 8, 9 фактически соответствуют формулам Li_{6.7}La₃Zr₂O_{11.85}, Li_{7.5}La₃Zr₂O_{12.25} и Li_{8.2}La₃Zr₂O_{12.6}, соответственно. Из уточненных формул видно, что не весь избыточный литий в электролите превратился в карбонат лития, значительная его часть оказалась внедрена в структуру LLZ.

Нейтронографические исследования образцов $Li_xLa_3Zr_2O_{8.5+0.5x}$ (x=7, 8, 9) показали уменьшение параметров и объема решетки (рис. 4) с ростом содержания лития (x) в структуре тетрагонального LLZ, что косвенно подтверждает изменение его стехиометрии по литию (в случае перехода сверхстехиометричного лития в другую фазу параметры решётки LLZ оставались бы неизменными). Уменьшение объема элементарной ячейки с ростом х может быть связано с более сильным взаимодействием сверхстехиометричных ионов лития с анионами кислорода; ЭТО подтверждает и уменьшение расстояния между атомами Li – O (табл. 2).

Рис. 4. Зависимость параметров элементарной ячейки от содержания лития в $Li_xLa_3Zr_2O_{8,5+0,5x}$.

Таблица 2

Расстояние Li - O в твердых электролитах $Li_x La_3 Zr_2 O_{8,5+0,5x}$

x	6,7	7,5	8,2
<li1–o>, Å</li1–o>	1,909(1)	1,912(2)	1,911(2)
<li2–o>, Å</li2–o>	2,265(1)	2,261(1)	2,256(2)
<li3–o>, Å</li3–o>	3,313(2)	3,311(2)	3,305(2)

(по данным нейтронографии)

Методами ИСС и ЯМР исследованы транспортные свойства тетрагональных электролитов $Li_xLa_3Zr_2O_{8,5+0,5x}$. При увеличении содержания лития электропроводность увеличивается, проходя через максимум при номинальном значении *x*=9, отвечающем верхней границе области гомогенности LLZ по литию (рис. 5). Этот рост, по-видимому, связан с увеличением числа носителей заряда – ионов лития в структуре тетрагонального LLZ. При *x*=10 электропроводность снижается, что вполне очевидно связано с присутствием заметных количеств второй фазы.

Рис. 5. Изотермы общей электропроводности $Li_xLa_3Zr_2O_{8,5+0,5x}$, измеренной методом электрохимического импеданса.

Линии ЯМР для образца номинального состава Li₉La₃Zr₂O₁₃ шире, чем для Li₇La₃Zr₂O₁₂ (рис. 6). Уширение ЯМР-сигнала свидетельствует об усилении диполь-дипольного взаимодействия. Такое усиление может быть следствием уменьшения межатомного расстояния, установленного нейтронографически. Более сильное межчастичное взаимодействие, в свою очередь, снижает подвижность ионов лития в Li₉La₃Zr₂O₁₃. Несмотря на это, электропроводность образца состава Li₉La₃Zr₂O₁₃ оказывается существенно выше, чем стехиометрического Li₇La₃Zr₂O₁₂. Это возможно в том случае, если увеличение концентрации носителей заряда, Li⁺, оказывает бо́льшее величину влияние на электропроводности, чем уменьшение ИХ подвижности.

Рис. 6. Зависимость полуширины сигнала ⁷Li-ЯМР от температуры для $Li_7La_3Zr_2O_{12}$ (\Box) и $Li_9La_3Zr_2O_{13}$ (∇).

Полученные результаты говорят о том, что возможности повышения проводимости путем введения сверхстехиометрического ЛИТИЯ В тетрагональный $Li_{x}La_{3}Zr_{2}O_{8.5+0.5x}$ исчерпываются при номинальном содержании лития x=9 (или реальном x=8,2). Дальнейшее введение лития в LLZ приводит к образованию примесных фаз, резко снижающих проводимость электролита. В связи с этим, представляет интерес изучить возможность повышения транспортных характеристик LLZ путем кубической LLZ c стабилизации высокопроводящей модификации помощью гетеровалентного допирования.

В Главе 5 описаны результаты, касающиеся стабилизации кубической фазы LLZ с помощью гетеровалентного допирования ионами алюминия ПО подрешетке циркония при стехиометрическом И сверхстехиометрическом содержании лития.

Образцы LLZ с номинальным химическим составом Li₇La₃Zr_{2-0.75v}Al_vO₁₂ (*y*=0,05, 0,10, 0,15, 0,20, 0,25, 0,30) были синтезированы цитрат-нитратным методом. По данным РФА, однофазным оказался единственный образец, отвечающий у=0,15. Основной фазой всех стабилизированных алюминием электролитов является LLZ с кубической структурой типа $Ia\overline{3}d$. Параметр решетки *а* уменьшается с увеличением содержания алюминия до у=0,15 и далее практически не меняется. Это говорит о насыщении твердого раствора алюминием при у=0,15; выше этого предела обнаруживаются содержащие алюминий примесные фазы LaAlO₃ и $La_2Li_{0.5}Al_{0.5}O_4$, Наблюдаемое уменьшение параметра *а* можно объяснить, если предположить, что алюминий занимает позицию циркония, имеющего бо́льший ионный радиус.

Значительный рост проводимости в системе $Li_7La_3Zr_{2-0,75y}Al_yO_{12}$ при увеличении содержания A1 от 0,00 до 0,05 является результатом перехода LLZ из тетрагональной модификации в кубическую (рис. 7), но образцы с y=0,05 и 0,10 содержат примесную фазу $La_2Zr_2O_7$. Данная примесь исчезает

Рис. 7. Изотермы общей электропроводности электролитов номинального состава Li₇La₃Zr_{2-0,75y}Al_yO₁₂.

при y=0,15 (однофазный кубический LLZ); этот состав характеризуется максимумом на изотермах проводимости. Появление примесей LaAlO₃ и La₂Li_{0.5}Al_{0.5}O₄ при *у*=0,20 несколько снижает электропроводность и увеличивает кажущуюся При энергию активации. увеличении концентрации допанта (у=0,25 и 0,30) транспортные характеристики электролитов несколько улучшаются. Этот эффект может быть связан с тем, что небольшое количество примесных фаз локализуется на границах зерен LLZ и блокирует пути миграции ионов Li⁺, увеличивая сопротивление образца. При x>0,20 примесные фазы образуют отдельные изолированные гранулы, которые не препятствуют литий-ионному транспорту через керамику LLZ.

Для того, чтобы исследовать влияние сверхстехиометрического лития на фазовый состав и транспортные свойства кубического LLZ, цитратнитратным методом были синтезированы образцы номинальных составов Li₈La₃Zr_{2-0,75y}Al_yO_{12,5} и Li₉La₃Zr_{2-0,75y}Al_yO₁₃ в том же интервале *y*=0,05-0,30. Содержание сверхстехиометрического лития отвечает области гомогенности тетрагональной фазы LLZ.

Рентгенофазовый анализ образцов $Li_8La_3Zr_{2-0,75y}Al_yO_{12,5}$ показал, что составы с *y*=0,10-0,15 имеют кубическую структуру и являются однофазными. Изотермы общей электропроводности $Li_8La_3Zr_{2-0,75y}Al_yO_{12,5}$ приведены на рис. 8. Проводимость монотонно возрастает с ростом *y* и

достигает максимума при y=0,20, хотя этот состав не является однофазным и содержит примесь алюмината лантана. Дальнейшее введение алюминия несколько снижает проводимость, что вполне ожидаемо для неоднофазных образцов. С ростом температуры разница в общей проводимости между тетрагональным Li₈La₃Zr₂O_{12,5} и допированными кубическими Li₈La₃Zr_{2-0,75y}Al_yO_{12,5} постепенно уменьшается, так как тетрагональный LLZ имеет более высокие значения энергии активации.

По PΦA, дальнейшее данным увеличение содержания сверхстехиометрического изменяет фазовый лития снова состав электролитов: образцы Li₉La₃Zr_{2-0.75v}Al_vO₁₃ являются однофазными в более широком интервале у=0,10-0,20, примесные фазы обнаруживаются только при $y \ge 0.25$, а переход от тетрагональной модификации к кубической имеет место лишь начиная с у=0,10. Суммируя результаты исследования допированного алюминием LLZ с x=7, 8 и 9, можно заключить, что наличие сверхстехиометрического лития существенно расширяет область гомогенности кубического LLZ по алюминию.

Рис. 8. Изотермы общей электропроводности электролитов номинального состава $Li_8La_3Zr_{2-0.75v}Al_vO_{12.5}$.

Рис. 9. Изотермы общей электропроводности электролитов номинального состава Li₉La₃Zr_{2-0,75v}Al_vO₁₃.

На рис. 9 представлена зависимость проводимости от содержания алюминия в Li₉La₃Zr_{2-0,75y}Al_yO₁₃ при различных температурах. При увеличении содержания Al от y=0,00 до y=0,05 проводимость при 25-100 °C практически не изменяется, так как переход LLZ из тетрагональной модификации в кубическую не произошел; заметный рост проводимости связан с появлением кубической модификации при y=0,10. Максимальные величины проводимости отвечают y=0,15; далее она незначительно снижается с ростом у.

На основании полученных результатов можно сделать следующий вывод: для недопированных тетрагональных электролитов Li_xLa₃Zr₂O_{8 5+0 5x} (x=7-9) электропроводность тем больше, чем выше содержание лития, а для допированных алюминием кубических электролитов Li_xLa₃Zr_{2-0.75v}Al_vO_{8,5+0.5x} (x=7; 8; 9; y=0.05-0.30) наблюдается обратная зависимость транспортных свойств от величины х. Данное явление можно объяснить особенностями ионного транспорта В тетрагональной И кубической механизма модификациях LLZ. Из литературы известно, ЧТО тетрагональная модификация характеризуется полной заселенностью позиций лития. Сверхстехиометрический литий занимает, по-видимому, не характерные для лития позиции или междоузлия, что приводит к увеличению количества ионов Li⁺ в единице объема фазы и, соответственно, проводимости за счет повышения концентрации носителей заряда. Для кубической модификации LLZ, напротив, степень заполнения позиций лития меньше единицы, именно свободные литиевые узлы и обеспечивают быстрый ионный транспорт. При увеличении концентрации лития эти свободные позиции все больше заполняются, что затрудняет перенос Li⁺ в кубической структуре.

В заключении суммированы различные факторы, положительно и отрицательно влияющие на транспортные свойства твердых электролитов на основе Li₇La₃Zr₂O₁₂, а именно, литиевая нестехиометрия и введение допанта. Сформулированы рекомендации по улучшению свойств

керамических материалов на основе LLZ. Показана принципиальная возможность использования тетрагональной модификации LLZ в химическом источнике тока с литиевым анодом.

выводы

1. Предложена методика цитрат-нитратного синтеза твердых электролитов на основе цирконата лантана-лития, позволяющая получить однородные по гранулометрическому составу продукты при смягчении условий синтеза по сравнению с твердофазным (900 °C, 5 ч). Разработана методика получения керамики с закрытой пористостью и плотностью около 82 % (изостатическое прессование, 500 МПа, отжиг в течение 1 ч при 1180 °C).

2. Синтезированы твердые электролиты с тетрагональной структурой $Li_xLa_3Zr_2O_{8,5+0,5x}$ (*x*=6-10) и электролиты с кубической структурой $Li_xLa_3Zr_{2-0,75y}Al_yO_{8,5+0,5x}$ (*x*=7; 8; 9; *y*=0,05-0,30). Определен их фазовый и химический состав. Показано, что синтезированные на воздухе образцы содержат незначительное количество карбоната лития (1-4 % (масс.)).

3. Впервые установлены границы области гомогенности для тетрагональных электролитов $\text{Li}_x \text{La}_3 \text{Zr}_2 O_{8,5+0,5x}$ при варьировании *x* и для кубических электролитов $\text{Li}_x \text{La}_3 \text{Zr}_{2-0,75y} \text{Al}_y O_{8,5+0,5x}$ при варьировании *x* и *y*. Показано, что для тетрагонального LLZ область гомогенности отвечает интервалу *x*=7-9, тогда как для кубического LLZ обнаружена взаимосвязь между *x* и *y*: с ростом содержания сверхстехиометрического лития область гомогенности по алюминию расширяется.

4. Методом электрохимического импеданса измерены транспортные кубических характеристики тетрагональных И электролитов при варьировании их состава в интервале 25 - 230 °C. Впервые обнаружен эффект повышения проводимости с ростом *х* для $Li_{x}La_{3}Zr_{2}O_{8.5+0.5x}$ и обратный эффект для Li_xLa₃Zr_{2-0.75v}Al_vO_{8.5+0.5x}. Предположено, что рост LLZ проводимости тетрагональном В при введении сверхстехиометрического лития, занимающего не характерные для него

позиции или междоузлия, может быть связан с увеличением концентрации носителей заряда, причем этот эффект вносит бо́льший вклад, чем уменьшение их подвижности. В кубической структуре LLZ сверхстехиометрический литий занимает и блокирует свободные позиции лития, обеспечивающие быстрый перенос ионов, что и приводит к падению проводимости.

5. Получен новый литий-проводящий электролит на основе кубического LLZ с суперионной литиевой проводимостью при комнатной температуре 1,3·10⁻⁴ См/см и энергией активации 34,1±0,8 кДж/моль (Патент РФ № 2483398).

6. Впервые рассчитаны термодинамические характеристики стехиометрического цирконата лантана-лития Li₇La₃Zr₂O₁₂ (*S*=423,5-968,7 Дж/(К·моль), C_p =464,5-622,5 Дж/(К·моль), *H*- H_0 =72,65-355,83 кДж/моль, $\Delta G_{obp.}$ =(-6612,11)-(-5968,78) кДж при T=298–800 К). Экспериментально показана устойчивость тетрагонального Li₇La₃Zr₂O₁₂ на воздухе в течение 12 суток при 25 °C, в контакте с металлическим литием в течение 1 месяца. 7. Измерены токи обмена на границе Li|Li₇La₃Zr₂O₁₂ в интервале температур

25–475 °C, обнаружен их быстрый рост выше температуры плавления лития (180,5 °C). Выше 350 °C токи обмена достигают величины $200 - 400 \text{ мA/cm}^2$, что говорит о возможности использования $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$ и его производных в качестве сепаратора в среднетемпературных источниках тока.

Цитированная литература:

1. Knauth P. Inorganic solid Li ion conductors: An overview // Solid State Ionics. V. 180. 2009. P. 911-916.

2. Murayama M., Kanno R., Irie M., Ito S. Synthesis of new lithium ionic conductor thio-LISICON-Lithium silicon sulfides system // J. Solid State Chemistry. 2002. V. 168. P. 140-148.

3. Murugan R., Thangadurai V., Weppner W. Fast lithium ion conduction in garnet-type $Li_7La_3Zr_2O_{12}$ // Angew. Chem. Int. Ed. 2007.V. 46. P. 7778-7781.

4. Моисеев Г.К., Ватолин Н.А. Некоторые закономерности изменения и методы расчёта термохимических свойств неорганических соединений. Екатеринбург: УрО РАН, 2001. 108 с.

Основное содержание диссертации опубликовано в работах:

1. Патент 2483398 РФ, МПК Н01М 10/00. Твердый электролит с литийионной проводимостью / Андреев О.Л., Ильина Е.А. (Россия). 2011147462/07; Заявлено 22.11.2011; Опубл. 27.05.2013. Бюл. №15. Приоритет 22.11.2011.

2. <u>Il'ina E.A.</u>, Andreev O.L., Antonov B.D., Batalov N.N. Morphology and transport properties of the solid electrolyte $Li_7La_3Zr_2O_{12}$ prepared by the solid-state and citrate-nitrate methods // J. Power Sources. 2012.V. 201. p. 169-173.

3. Raskovalov A.A., <u>Il'ina E.A.</u>, Antonov B.D. Structure and transport properties of Li₇La₃Zr_{2-0.75x}Al_xO₁₂ superionic solid electrolytes // J. Power Sources. 2013. V. 238. p. 48-52.

4. <u>Ильина Е.А.</u>, Александров А.В., Расковалов А.А., Баталов Н.Н. Оптимизация условий приготовления керамического электролита Li₇La₃Zr₂O₁₂ для литиевых источников тока // ЖПХ. 2013. Т. 86. с. 1250-1254.

5. <u>Ильина Е.А.</u>, Андреев О.Л., Баталов Н.Н. Транспортные свойства литийпроводящего твердого электролита Li₇La₃Zr₂O₁₂ // Фундаментальные проблемы электрохимической энергетики. Тезисы докладов. 3-7 октября 2011. Саратов. с. 173-176.

6. <u>Ильина Е.А.</u>, Шевелин П.Ю., Баталов Н.Н. Устойчивость твердого электролита Li₇La₃Zr₂O₁₂ к металлическому литию // Актуальные проблемы и перспективы развития литиевых ХИТ: Материалы научно-практической конференции. 17-19 сентября 2012 г. Алматы. с. 164-167.

7. <u>Ильина Е.А.</u>, Антонов Б.Д., Баталов Н.Н. Транспортные свойства твердых электролитов системы Li_xLa₃Zr₂O_{8.5+0.5x} (x=6-10) // Актуальные проблемы и перспективы развития литиевых ХИТ: Материалы научно-практической конференци. 17-19 сентября 2012 г. Алматы. с. 168-171.

8. <u>Ильина Е.А.</u>, Андреев О.Л., Антонов Б.Д. Устойчивость твердого электролита Li₇La₃Zr₂O₁₂ к дистиллированной воде // Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах. Материалы XII междунар. конф. 1-6 октября 2012. Краснодар. с. 249-251.

9. <u>Ильина Е.А.</u>, Расковалов А.А., Резницких О.Г., Баталов Н.Н. Теплоёмкость твердого электролита Li₇La₃Zr₂O₁₂ // Сб. тезисов докладов на II Всероссийской молодёжной конференции "Успехи химической физики". 19-24 мая 2013. Черноголовка. с. 202.

10. <u>Ильина Е.А.</u>, Расковалов А.А., Шевелин П.Ю., Баталов Н.Н. Определение содержания карбонатов в твердых электролитах на примере Li₇La₃Zr₂O₁₂ // Физическая химия и электрохимия расплавленных и твердых электролитов: материалы XVI Рос. конф. 16-20 сентября 2013 г. Екатеринбург. Т. II. с 102-103.

Подписано в печать 20.11.2013 г. Формат 60×84 1/16 Бумага писчая. Плоская печать. Усл. печ. л. 1,0 Уч.-изд. л. 1,0. Тираж 100 экз. Заказ