На правах рукописи

КАРДАНОВ АНЗОР ЛИОНОВИЧ

ЭЛЕКТРОХИМИЧЕСКИЙ СИНТЕЗ НАНОПОРОШКОВ ТВЕРДОСПЛАВНЫХ КОМПОЗИЦИЙ НА ОСНОВЕ КАРБИДОВ МОЛИБДЕНА И ВОЛЬФРАМА

Специальность – 02.00.05 – электрохимия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2013 г.

Работа выполнена на кафедре неорганической и физической химии, в ЦКП «Рентгеновская диагностика материалов» Кабардино-Балкарского государственного университета им. Х.М. Бербекова.

Научный руководитель:	Кушхов Хасби Билялович доктор химических наук, профессор Ребрин Олег Иринархович доктор химических наук, профессор, ФГАОУ ВПО Уральский федеральный университет имени первого Президента России Б.Н.Ельцина, заведующий кафедрой		
Официальные оппоненты:			
	Шуров Николай Иванович кандидат химических наук, ФГБУН «Институт высокотемпературной электрохимии» Уральского отделения Российской академии наук, старший научный сотрудник		
Ведущая организация –	ФГБОУ ВПО Ковровская государственная		

Защита диссертации состоится «13» февраля 2013 г. в 13.00 часов на заседании диссертационного совета Д 004.002.01 при Институте высокотемпературной электрохимии УрО РАН по адресу: г. Екатеринбург, ул. Академическая, 20, конференц-зал.

технологическая академия имени В.А. Дегтярева

Отзывы на автореферат в 2-х экземплярах направлять ученому секретарю диссертационного совета по адресу: 620990, г. Екатеринбург, ул. Академическая, 20, Институт высокотемпературной электрохимии УрО РАН, ученому секретарю диссертационного совета Нине Павловне Кулик. E-mail: n.p.kulik@ihte.uran.ru.

Факс: +7 (343) 374-59-92

С диссертацией можно ознакомиться в научной библиотеке УрО РАН.

Автореферат разослан «____»____ 2013 г.

Ученый секретарь диссертационного совета кандидат химических наук

Н.П. Кулик

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Одной из важнейших задач при производстве твердых является создание безвольфрамовых твердых сплавов или сплавов поиск которые способны сохранить равноценных заменителей, высокие физикомеханические и эксплуатационные свойства. Одним из таких заменителей может быть молибден, обладающий способностью образовывать химические соединения, аналогичные соединениям вольфрама. Размер зерна исходного материала (один из самых распространенных материалов – карбид вольфрама) и процентное содержание связующего металла (Co, Fe, Ni) оказывают определяющее влияние на физические свойства сплава - твердость, прочность и износостойкость. Особенно высокими обладают характеристиками изделия, изготовленные ИЗ наноразмерных, ультрадисперсных и субмикронных порошков, размер зерен которых 50 нм – 850 нм.

В настоящий момент в России нет производства по выпуску нанокристаллических, ультрадисперсных и субмикронных порошков карбидов молибдена и вольфрама. Создание такого производства, обеспечение и насыщение рынка высококачественным и недорогим сырьем для производства твердых сплавов позволит решить важную стратегическую задачу – импортозамещение.

Среди способов синтеза порошков карбидов, способных решить задачу получения наноразмерных частиц, весьма перспективным является высокотемпературный электрохимический синтез (ВЭС).

В пятидесятые годы XX века появились первые работы Андрие и Вейса, в которых впервые показана возможность электрохимического синтеза карбидов молибдена и вольфрама из расплавленных сред. В конце семидесятых годов XX века благодаря работам В.И. Шаповала и Х.Б. Кушхова с сотрудниками наметились определенные возможности в практической реализации процессов получения карбидов тугоплавких металлов методом ВЭС. Ими было установлено, что в основе метода синтеза карбидов лежат многоэлектронные процессы совместного электровыделения металлов и неметаллов из различных расплавов с последующим их взаимодействием на катоде на атомарном уровне.

Работа выполнена в рамках: ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технического комплекса России на 2007–2013 годы» (Госконтракт № № 02.513.11.3324, 16.552.11.7045), ФЦП «Научные и научно-педогогические кадры инновационной России на 2009 – 2013 годы» (Госконтракт № П 1229), программы «У.М.Н.И.К.- 2011» Фонда содействию развития малых форм предприятий в научно-технической сфере, а также при поддержке Европейской Комиссии в рамках научно-исследовательского проекта GenHyPEM (№ 019802) 6^{-ой} Рамочной Программы и проекта РФФИ (№ 11–03–00612–а).

Целью работы явилась теоретическое обоснование и разработка способа высокотемпературного электрохимического синтеза наноразмерных порошков двойного карбида молибдена и вольфрама, а также твердосплавных композиций на основе двойного карбида молибдена и вольфрама и металлов триады железа из вольфраматно-молибдатно-карбонатных расплавов.

Для достижения поставленных целей необходимо решить следующие задачи:

- Исследование электрохимического поведения оксидного расплава Na₂WO₄-Li₂WO₄-Li₂MoO₄-Li₂CO₃;
- Исследование условий и режимов электрохимического синтеза наноразмерных порошков двойных карбидов молибдена и вольфрама из расплавов Na₂WO₄-Li₂WO₄-Li₂MoO₄-Li₂CO₃;
- 3. Получение экспериментальных партий наноразмерных порошков двойных карбидов молибдена и вольфрама для исследования их свойств;
- 4. Электрохимический синтез твердосплавных композиций на основе двойных карбидов молибдена и вольфрама и металлов триады железа;
- Исследование фазового, элементного и гранулометрического состава наноразмерных порошков двойных карбидов молибдена и вольфрама и твердосплавных композиций на их основе.

Научная новизна:

- Впервые исследован и реализован процесс совместного электровосстановления молибдена, вольфрама, углерода из вольфраматно-молибдатно-карбонатных расплавов при 1073 ÷ 1173 К;
- Впервые разработан и реализован в практике высокотемпературный электрохимический синтез наноразмерных порошков двойного карбида молибдена и вольфрама из вольфраматно-молибдатно-карбонатных расплавов при 1073 ÷ 1173 К;
- Впервые осуществлен электрохимический синтез твердосплавных композиций на основе двойных карбидов молибдена и вольфрама и металлов триады железа в вольфраматно-молибдатно-карбонатных расплавах.

Практическая значимость. Полученные результаты могут быть взяты за основу при разработке технологии электрохимического получения наноразмерных порошков двойного карбида молибдена и вольфрама, и твердосплавных композиций с металлами триады железа.

На защиту выносятся:

- Результаты исследования электрохимического поведения оксидного расплава Na₂WO₄-Li₂WO₄-Li₂MoO₄-Li₂CO₃;
- 2. Экспериментальные данные по высокотемпературному электрохимическому синтезу наноразмерных порошков двойного карбида молибдена и вольфрама;
- Экспериментальные данные по высокотемпературному электрохимическому синтезу твердосплавных композиций на основе двойного карбида молибдена и вольфрама с металлами триады железа;
- Результаты анализов (элементного, фазового) и аттестации (гранулометрического состава) наноразмерных порошков двойного карбида молибдена и вольфрама и твердосплавных композиций на их основе.

Личный вклад соискателя. Определение темы и задач диссертационной работы, анализ, обсуждение и обобщение результатов полученных в работе выполнены автором совместно с научным руководителем, д.х.н., профессором

Х.Б. Кушховым.

Автором проведены исследования по совместному электровосстановлению ИОНОВ молибдена. вольфрама И углерода И электрохимический синтез порошков двойного карбида молибдена и наноразмерных вольфрама И твердосплавных композиций с металлами триады железа на его основе.

Определены фазовый, элементный и гранулометрический состав нанодисперсных порошков двойных карбидов молибдена и вольфрама, твердосплавных композиций на их основе.

Апробация работы. Основные результаты диссертационной работы были представлены на VI Российской ежегодной конференции молодых научных сотрудников и аспирантов (Москва, 2009), Международной научно-технической конференции «Микро- и нанотехнологии в электронике» (Нальчик, 2009), Ш-ей конференции Всероссийской молодежной С элементами научной школы «Функциональные наноматериалы и высокочистые вещества» (Москва, 2009), IX Международном Фрумкинском симпозиуме (Москва, 2010), Международной научной конференции студентов, аспирантов и молодых ученых «Перспектива-2010» (Нальчик, 2010), XV Российской конференции по физической химии и электрохимии расплавленных твердых электролитов (Нальчик, И 2010), Международной научной конференции студентов, аспирантов и молодых ученых «Перспектива – 2012» (Нальчик, 2012), II республиканская конференция студентов, аспирантов и молодых ученых «Перспективные инновационные проекты молодых ученых КБР» (Нальчик, 2012).

Публикации. Основное содержание работы отражено в 12 печатных работах, в том числе в 2 статьях и 10 тезисов докладов и 1 патенте РФ.

Объем и структура работы. Диссертационная работа состоит из введения, 4 глав, выводов и списка цитируемой литературы. Работа изложена на 142 страницах машинописного текста, содержит 28 таблиц, 70 рисунка, список цитируемой литературы включает 114 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснованы выбор темы, её актуальность и целесообразность проведения конкретных исследований в выбранном направлении. Сформулированы цель работы, поставлены задачи исследований.

В первой главе приведены общие положения о диаграммах состояния молибден – вольфрам – углерод, вольфрам – молибден – железо – углерод, вольфрам – молибден – кобальт – углерод. Представлен аналитический обзор по проблеме электрохимического способа получения металлического молибдена и вольфрама, их карбидов, а также твердосплавных композиций с металлами триады железа из ионных расплавов. Отмечается перспективность метода высокотемпературного электрохимического синтеза наноразмерных порошков двойных карбидов молибдена и вольфрама.

Во второй главе обоснован выбор электрохимических и физико-химических методов исследования, приведены методики проведения экспериментов и подготовки реактивов, описаны конструкции электрохимических ячеек и электродов, охарактеризованы приборы и оборудование. Для решения задач поставленных в работе применялись *методы*: циклической вольтамперометрии, потенциостатический и гальваностатический электролиз, рентгенофазовый и рентгенофлюоресцентный анализ, определение содержания общего углерода в образцах, лазерный дифракционный анализ размера частиц.

Эксперименты по исследованию процессов совместного электровосстановления и электросинтеза проводились в специально сконструированных электрохимических ячейках. В качестве расплава-растворителя использовался расплав вольфрамата натрия. Индикаторным электродом служил полупогруженный игольчатый платиновый электрод. Анодом и одновременно контейнером для расплава был стеклоуглеродный тигель. В качестве электрода сравнения использовали платино-кислородный электрод.

Вольтамперные исследования проводили с помощью потенциостата Autolab PGSTAT 30 (Голландия) и потенциостата/гальваностата PARSTAT 2273 (США) в

интервале скоростей поляризации от 0,01 В/с до 10 В/с. Рентгенофазовый анализ полученных катодных продуктов проводили на рентгеновском дифрактометре ДРОН-6 (Россия). Элементный анализ проводили на рентгенофлуоресцентном элементном анализаторе Спектроскан МАКС-GV (Россия). Анализ на содержание общего углерода в полученных образцах проводили на анализаторе на углерод и серу MultiEA200CS (Германия). Размер частиц исследовали лазерным дифракционным анализатором Fritsch Analysette-22 Nanotech (Германия).

Полученный экспериментальный материал изложен в двух последующих главах, основное содержание которых приводится ниже.

В выводах сформулированы основные результаты диссертационной работы.

Исследование процессов совместного электровосстановления молибдена, вольфрама и углерода в вольфраматно-молибдатно-карбонатных расплавах

На рис. 1 представлены вольтамперные зависимости расплава Na₂WO₄ (кривая 1) на платиновом электроде при последовательном добавлении Li₂WO₄ (кривые 2-4) при 1173 К. Введение до 10,0 мол.% Li₂WO₄ в расплав вольфрамата натрия не позволяет обнаружить электрохимическую активность вольфрамат-иона. Однако вольтамперные зависимости смещаются в положительную область потенциалов по вольтамперограммой фона. В сравнению С отличие OT анодной части вольтамперограммы фона в анодной части вольтамперограммы расплава Na₂WO₄ содержащего 10,0 мол.% Li₂WO₄ наблюдается две волны растворения продуктов катодного цикла. Первая волна при потенциалах –(1,5-1,4)В, вторая при потенциалах -(0,5-0,1)В. Первая волна вызвана растворением выделившегося вольфрама, а вторая волна растворением интерметалидов платины с вольфрамом.

С увеличением концентрации вольфрамата лития эта картина становится более ярче выраженной. При содержании вольфрамата лития 20,0 мол.% при потенциалах –(1,5-1,7)В наблюдается волна восстановления вольфрамат-иона, координированного катионом лития.

Аналогичная картина наблюдается и на вольтамперных исследованиях (рис. 2, кривые 2-5) проведенных при 1073 К. Однако, отсутствие волны на анодной части при –(0,5-0,1)В свидетельствует о том, что образование интерметаллидов вольфрама с платиной при 1073 К не происходит (рис. 2).

Рентгенофазовый рентгенофлуоресцентный И анализ продуктов потенциостатического электролиза при потенциалах завершения волны (- 1,7В) показал наличие в катодном осадке металлического вольфрама.

Нами исследованы процессы совместного электровосстановления вольфрамати молибдат-иона в расплаве Na₂WO₄-Li₂WO₄-Li₂MoO₄.

Puc. 1. Вольтамперные зависимости Рис. сравнения Pt, O_2 . Анод - Pt. T = 1173 K.

2. Вольтамперные зависимости расплава Na_2WO_4 при последовательном расплава Na_2WO_4 при последовательном добавлении Li₂WO₄, мол.%: 1 - фон добавлении Li₂WO₄, мол.%: 1 - фон Na_2WO_4 , 2 - 5,0; 3 - 10,0; 4 - 20,0. V = 0,2 Na_2WO_4 , 2 - 1,0; 3 - 5,0; 4 - 10,0; 5 - 40,0. V B/c. T = 1173 К. Катод - Pt. Электрод = 0,2 B/c. T = 1073 К. Катод - Pt. Электрод сравнения Pt, O_2 . Анод - Pt. T =1073 К.

Кривая 1 (рис. 3) соответствует вольтамперной зависимости расплава Na₂WO₄-Li₂WO₄ (20,0 мол.%) при 1173 К. При добавлении в расплав такого состава молибдата лития наблюдается смещение вольтамперной кривой в положительную область потенциалов на 100-150 мВ.

При увеличении концентрации Li₂MoO₄ до 5,0 мол.% на вольтамперограммах наблюдается тенденция раздвоения волны совместного выделения молибдена и вольфрама (рис. 4, кривая 4). При содержании в расплаве молибдата лития около 20,0 мол.% наблюдается практически одна растянутая по оси потенциалов волна совместного восстановления молибдат- и вольфрамат-ионов координированных катионами лития. В анодной ветви циклической вольтамперограммы также наблюдается одна растянутая волна растворения продукта катодной волны.

Рис. 3. Вольтамперные зависимости Рис. 4. Вольтамперные зависимости расплава Na₂WO₄-Li₂WO₄ (20,0 мол.%) расплава Na₂WO₄ - Li₂WO₄ (32,0 мол.%) последовательном добавлении при при Li2MoO4, мол.%: 1 – 1,0; 2 – 2,5; 3 – 5,0; 4 Li2MoO4, мол.%: 1 – 0; 2 – 1,0; 3 – 2,5; 4 – -10,0; 5 - 20,0. V = 0,2 B/c. T = 1173 K. 5,0; 5 - 10,0; 6 - 20,0. V = 0,2 B/c. T =Катод - Pt. Электрод сравнения Pt, O₂. 1073 К. Катод – Pt. Электрод сравнения Анод–Рt.

последовательном добавлении *Pt*, *O*₂. *Анод* – *Pt*.

Вольтамперные исследования аналогичных концентрационных соотношениях при 1073 К показали идентичные результаты (рис. 4). Кривая 1 соответствует вольтамперной зависимости расплава Na₂WO₄-Li₂WO₄ (32,0 мол.%). При добавлении в расплав такого состава молибдата лития наблюдается смещение вольтамперной кривой в положительную область потенциалов на 100-150 мВ.

При содержании в расплаве Na_2WO_4 -Li₂WO₄ порядка 5,0 мол.% Li₂MoO₄ (рис. 4, кривая 4) наблюдается тенденция раздвоения волны совместного выделения молибдена и вольфрама. Если концентрация молибдата лития составляет около 20,0 мол.% (кривая 6) наблюдается практически одна растянутая по оси потенциалов молибдатсовместного восстановления И вольфрамат-ионов волна координированных катионами В анодной ветви циклической лития. вольтамперограммы также наблюдается одна растянутая волна растворения продукта катодной волны.

Фазовый и элементный анализ продуктов потенциостатического –(1,7-2,0)В электролиза расплава Na₂WO₄-Li₂WO₄(20,0 мол.%)-Li₂MoO₄(5,0 мол.%) при 1173 К на платиновом электроде показал наличие в катодном осадке фазы металлического вольфрама и молибдена.

Для совмещения потенциалов выделения углерода, молибдена и вольфрама, которое необходимо для реализации электрохимического синтеза двойного карбида молибдена и вольфрама, требуется управление факторами, влияющими на скорость выделения углерода. В исследуемой системе таким фактором является концентрация Li₂CO₃.

При добавлении в вольфраматно-молибдатный расплав Na_2WO_4 -Li₂ $WO_4(20,0 MO.\%)$ -Li₂ $MoO_4(5,0 MO.\%)$ карбоната лития (рис. 5, кривая 2 и рис. 6) перед волной совместного восстановления ионов MoO_4^{2-} и WO_4^{2-} координированных катионом лития (рис. 6) появляется при потенциалах –(1,1-1,3)В волна восстановления карбонат-ионов, координированных катионами лития.

С увеличением концентрации карбоната лития (рис. 5, кривая 3) эти волны сливаются в одну растянутую по оси потенциалов волну совместного выделения углерода, молибдена и вольфрама. На анодной части наблюдается кроме волны растворения металлической фазы появляется при потенциалах –(0,250-0)В волна растворения углерода.

Puc. 5. расплава Na₂WO₄ - Li₂WO₄ (20,0 мол.%) - расплава Na₂WO₄ - Li₂WO₄ (20,0 мол.%) мол.%) Li_2MoO_4 (20.0)последовательном добавлении Li₂CO₃, мол.%) при различных потенциалах, В: 1 мол. %: 1 - 0, 2 - 5,0; 3 - 20,0. V = 0,2 B/c. -1,8; 2 - 2,0; 3 - 2,3. V = 0,2 B/c. T = 0,2T = 1173 К. Катод - Pt. Электрод 1173 К. Катод - Pt. Электрод сравнения сравнения Pt, O₂. Анод - Pt.

Вольтамперные зависимости Рис. 6. Вольтамперные зависимости при Li2MoO4 (20,0 мол.%) - Li2CO3 (5,0 *Рt*, *O*₂. *Анод* - *Pt*.

картина наблюдается при добавлении в вольфраматно-Аналогичная молибдатный расплав (Na₂WO₄-Li₂WO₄)_{эвт}-Li₂MoO₄(10,0 мол.%) карбоната лития при 1073 К (рис. 7).

С увеличением концентрации карбоната лития (рис. 7, кривая 3) эта волна представляет собой одну растянутую по оси потенциалов волну совместного выделения углерода, молибдена и вольфрама. На анодной части наблюдается только одна волна растворения, а волна растворения углерода при потенциалах –(0,250-0)В наблюдаемая при 1173 К (рис. 5 – 6) не обнаруживается.

Фазовый и элементный анализ продуктов потенциостатического электролиза при потенциалах –(1,7-2,0)В показал наличие двойного карбида молибдена и вольфрама и подтвердил возможность высокотемпературного электрохимического синтеза в вольфраматно-молибдатно-карбонатном расплаве.

Рис. 7. Вольтамперные зависимости расплава (Na_2WO_4 - Li_2WO_4)_{эвт} - Li_2MoO_4 (10,0 мол.%) при последовательном добавлении Li_2CO_3 , мол.%: 1 - 0; 2 - 5,0; 3 - 10,0. V = 0,2 В/с. T = 1073 К. Катод - Pt. Электрод сравнения Pt, O_2 . Анод - Pt.

Электрохимический синтез наноразмерных порошков двойного карбида молибдена и вольфрам и твердосплавных композиции на его основе

ВЭС двойных карбидов вольфрама и молибдена из вольфраматно-молибдатнокарбонатных расплавов позволяет значительно повысить скорость процесса синтеза и дисперсность целевого продукта, по сравнению с галогенидно-оксидными системами.

Как показали наши исследования, основными параметрами электросинтеза двойных карбидов вольфрама и молибдена, определяющими стехиометрию катодного осадка, являются: состав электролита, катодная плотность тока, температура и продолжительность электролиза. Существенен и вклад анодной плотности тока в осуществлении длительного электролиза без корректировки рабочего электролита.

В вольфраматно-молибдатно-карбонатных расплавах Na₂WO₄-Li₂WO₄-Li₂MoO₄-Li₂CO₃реализуется многоэлектронные процессы совместного электровыделения вольфрама, молибдена, углерода по реакциям:

$$\{Li_{x}WO_{4}\}^{2-x} + 6e \to W + \frac{x}{2}Li_{2}O + \left(4 - \frac{x}{2}\right)O^{2-}$$
(1)

$$\{Li_{x}MoO_{4}\}^{2-x} + 6e \to Mo + \frac{x}{2}Li_{2}O + \left(4 - \frac{x}{2}\right)O^{2-}$$

$$\{Li_{x}CO_{3}\}^{2-x} + 4e \to C + \frac{x}{2}Li_{2}O + \left(3 - \frac{x}{2}\right)O^{2-}$$

$$(3)$$

Непосредственное взаимодействие вольфрама, молибдена и углерода происходит на катоде с образованием наноразмерных порошков двойного карбида:

$$_{x}W +_{y}Mo + \left(\frac{x}{2} + \frac{y}{2}\right)C \rightarrow \frac{x}{2}W_{2}C \cdot \frac{y}{2}Mo_{2}C$$
 (4)

Для электрохимического синтеза двойных карбидов молибдена и вольфрама нами экспериментально были установлены концентрационные соотношения компонентов расплава, которые позволяют реализовать электрохимический синтез конечного продукта в широком интервале плотностей катодного тока и продолжительности электролиза (табл. 1).

Таблица 1.

Концентрационные соотношения компонентов в вольфраматно-молибдатно-карбонатном расплаве.

Mo	Состав электролита					
л⊼ 1/п	Na ₂ WO ₄	Li ₂ WO ₄	Li ₂ MoO ₄	Li ₂ CO ₃		
11/11	мол.%	мол.%	мол.%	мол.%		
1	55,2	36,8	1,0	7,0		
2	50,4	33,6	2,0	14,0		
3	45,6	30,4	3,0	21,0		
4	40,8	27,2	4,0	28,0		
5	36,0	24,0	5,0	35,0		

Преимущество гальваностатического над потенциостатическим электролизом обусловлено анодными процессами. На графитовом аноде в карбонатном расплаве в воздушной атмосфере протекает реакция, в результате которой выделяется CO₂ и O₂:

$$CO_3^{2-} \to CO_2 + \frac{1}{2}O_2 + 2e$$
 (5)

Отношение углекислого газа к кислороду растет с увеличением анодной плотности тока. В исследуемом расплаве выделяющийся CO₂ связывается свободной щелочью (Li₂O), которая образуется в результате термической диссоциации

карбоната лития и электродного процесса и происходит поддержание необходимой концентрации карбоната в расплаве в ходе электролиза.

В результате электролиза на катоде выделяется двойной карбид молибдена и вольфрама в виде карбидно-солевой «груши» цилиндрической формы. Форма карбидно-солевой «груши» в исследуемой системе существенно не зависит от условий электроосаждения двойного карбида молибдена и вольфрама (температуры, плотности катодного тока, продолжительности электролиза и т.д.), форма определяется только геометрией электрода. Состав солевой части "груши" практически не зависит от режима электролиза. Она представляет собой смесь Li₂WO₄, Li₂O, имеющую более высокую температуру плавления, чем температура расплава, что позволяет ей прочно удерживаться на катоде. Однако, масса и содержание чистого двойного карбида молибдена и вольфрама в карбидно-солевой «груше» зависит от параметров проведения электролиза.

После окончания электролиза и остывания катода от нее отбивали осажденный продукт и перемалывали до получения однородного порошка. Полученный порошок тщательно отмывали от соли горячей дистиллированной водой декантацией. Для оценки полноты отмывки от электролита синтезированных порошков проводился анализ промывочных растворов с помощью рентгенофлуоресцентного анализа на наличие вольфрама и молибдена. После растворения осадок промывался разбавленной НСІ для удаления нерастворимого карбоната лития. Для удаления низших оксидов вольфрама порошки промывались растворами щелочей. В первом случае это раствор 10% NaOH, во втором случае растворы NH4OH 1:1 или 2,5 %-ные растворы. Отмытые от солей порошки сушили в сушильном шкафу при температуре не более 373 К. При более высоких температурах порошки двойного карбида молибдена и вольфрама частично окисляются кислородом воздуха.

При одинаковой продолжительности электролиза, плотности катодного тока и начальных концентрациях исходных солей в расплаве содержание чистого карбида в карбидно-солевой «груше» изменяется в интервале 6,0-14,0 % от общей массы «груши». Такие результаты характерны для всех концентрационных соотношений в

системе Na₂WO₄-Li₂WO₄-Li₂MoO₄-Li₂CO₃. При плотностях тока выше 2,7 A/см² в продукте электролиза появляются фазы металлического вольфрама и молибдена, а процентное содержание катодного осадка составляет более 15,0 % от массы карбидно-солевой «груши». Содержание общего углерода колеблется в интервале 6,0-12,0 мас.%. Выход по току целевого продукта – двойного карбида молибдена и вольфрама составляет 80-90%.

Для установления верхнего предела плотности тока, позволяющего реализовать электрохимический синтез двойных карбидов молибдена и вольфрама с наименьшим размером частиц, были проведены электролизы при различных плотностях катодного тока. Величина катодной плотности тока, как показывают наши результаты, определяется концентрацией Li₂CO₃. Мы стремились проводить электролиз при более высоких плотностях катодного тока, которая позволяло бы получить ультрадисперсные порошки (Mo,W)₂C. В табл. 2 приведены зависимости фазового состава продуктов электролиза расплавленной системы Na₂WO₄-Li₂WO₄-Li₂MoO₄-Li₂CO₃ от плотности катодного тока при 1173 К. Результаты рентгенофлуоресцентного анализа подтверждают наличие молибдена и вольфрама.

Полученные результаты свидетельствуют, что средний размер частиц синтезированных порошков двойных карбидов молибдена и вольфрама равен 100-180 нм.

Электрохимический синтез двойных карбидов вольфрама и молибдена при 1073 К проводили при аналогичных плотностях катодного тока и концентрационных соотношениях, что и при 1173 К. Результаты рентгенофазового (рис. 8) и рентгенофлуоресцентного анализа продуктов электролиза показали наличие двойного карбида вольфрама и молибдена. На рентгенограммах полученных образцов (рис. 8) отсутствуют характеристические линии фазы WC, продуктом электросинтеза является (Мо,W)₂C.

Таблица 2.

Зависимость фазового состава продуктов электролиза расплавленной системы Na_2WO_4 -Li₂WO₄-Li₂MoO₄-Li₂CO₃ от плотности катодного тока. T = 1173 K. Продолжительность электролиза 10 мин.

N⁰	Состав электролита,	Начальная плотность тока,	
п/п	мол.%	A/cm ²	Фазовый состав
1	55,2 Na ₂ WO ₄	0,89	W_2C , Mo_2C
	36,8 Li ₂ WO ₄	1,77	W_2C , Mo_2C
	1,0 Li_2MoO_4	2,65	W_2C , Mo_2C
	7,0 Li ₂ CO ₃	3,54	W_2C , Mo_2C , W , Mo
2	50,4 Na ₂ WO ₄	0,89	W_2C , Mo_2C
	33,6 Li ₂ WO ₄	1,77	W_2C , Mo_2C
	2,0 Li_2MoO_4	2,65	W_2C , Mo_2C
	14,0 Li ₂ CO ₃	3,54	W_2C , Mo_2C
3	45,6 Na ₂ WO ₄	0,99	W_2C , Mo_2C
	30,4 Li ₂ WO ₄	1,67	W_2C , Mo_2C
	3,0 Li ₂ MoO ₄	2,39	W_2C , Mo_2C
	21,0 Li ₂ CO ₃	3,54	W_2C , Mo_2C , W , Mo
4	40,8 Na ₂ WO ₄	0,80	W_2C , Mo_2C
	27,2 Li ₂ WO ₄	1,60	W_2C , Mo_2C
	4,0 Li_2MoO_4	2,27	W_2C , Mo_2C
	28,0 Li ₂ CO ₃	3,54	W_2C , Mo_2C , W , Mo
5	36,0 Na ₂ WO ₄	0,80	W_2C , Mo_2C
	24,0 Li ₂ WO ₄	1,52	W_2C , Mo_2C
	5,0 Li ₂ MoO ₄	2,39	W_2C , Mo_2C
	35,0 Li ₂ CO ₃	3,03	W_2C, Mo_2C, W, Mo

Нами была изучена зависимость состава катодного осалка при гальваностатическом режиме от продолжительности электролиза. Исследования проводили с электролитами, приведенными в таблице 1 при плотностях катодного тока 1,20-3,00 А/см² и температуре 1073 К. Анодом и контейнером для расплава графитовый тигель. Результаты рентгенофазового служил И рентгенофлуоресцентного анализа продуктов электролиза от продолжительности электролиза представлены в табл. 3. Проведенные исследования показали, что с увеличением количества электричества пропущенного через рабочий электролит, наблюдается значительное уменьшение концентрации карбонат-иона. Изменение состава расплава приводит к качественному изменению фазового состава продуктов электролиза с течением времени, что указывает на важную роль содержания карбоната лития в расплаве.

Рис. 8. Рентгенограммы продуктов электролиза расплавленных систем (Na₂WO₄-Li₂WO₄)_{эвт}-Li₂MoO₄-Li₂CO₃, T = 1173 К. Продолжительность электролиза 10 мин. 1) Li₂MoO₄(1,0 мол.%)-Li₂CO₃(7,0 мол.%), $i_k = 2,50$ A/cm²; 2) Li₂MoO₄(2,0 мол.%)-Li₂CO₃(14,0 мол.%), $i_k = 2,40$ A/cm²; 3) Li₂MoO₄(3,0 мол.%)-Li₂CO₃(21,0 мол.%), $i_k = 2,50$ A/cm²; 4) Li₂MoO₄(4,0 мол.%)-Li₂CO₃(28,0 мол.%), $i_k = 2,50$ A/cm²; 5) Li₂MoO₄(5,0 мол.%)-Li₂CO₃(35,0 мол.%), $i_k = 2,50$ A/cm². Стандартные линии: $1 - W_2C$; $2 - Mo_2C$.

При незначительном снижении концентрации карбонат-иона в исследуемых электролитах в продукте электролиза появляются различные фазы карбидов вольфрама и молибдена, при обеднении расплава карбонат-ионом наблюдается выделение металлического вольфрама и молибдена. Дальнейшее продолжение электролиза приводит к обеднению расплава молибдат-ионом, в продукте электролиза обнаруживается только фаза металлического вольфрама.

Таблица З.

N⁰	Состав	Начальная		Фазовый состав	
п/п	электролита,	плотность	продолжительность		
	мол.%	тока, А/см ²	электролиза, мин.		
		2,40	10,0	W_2C , Mo_2C	
		2,30	20,0	WC, MoC, W_2C , Mo_2C	
	55,2 Na ₂ WO ₄	2,00	30,0	W_2C , Mo_2C , W , Mo	
1	36,8 Li ₂ WO ₄	2,20	40,0	W, Mo	
1	1,0 Li ₂ MoO ₄	1,90	50,0	W, Mo	
	7,0 Li ₂ CO ₃	1,70	60,0	W	
		1,70	70,0	W	
		1,40	80,0	W	
		2,00	10,0	W_2C , Mo_2C	
		1,80	20,0	W_2C , Mo_2C	
	50,4 Na ₂ WO ₄	1,90	30,0	W_2C , Mo_2C	
2	33,6 Li ₂ WO ₄	1,90	40,0	WC, MoC, W ₂ C, Mo ₂ C	
2	2,0 Li ₂ MoO ₄	1,90	50,0	WC, MoC, W_2C , Mo_2C	
	14,0 Li ₂ CO ₃	1,80	60,0	WC, MoC, W ₂ C, Mo ₂ C	
		2,00	70,0	W ₂ C, Mo ₂ C, W, Mo	
		2,00	80,0	W, Mo	
		2,00	10,0	W_2C , Mo_2C	
	45,6 Na ₂ WO ₄	1,80	20,0	W_2C , Mo_2C	
2	30,4 Li ₂ WO ₄	2,00	40,0	W_2C , Mo_2C	
5	3,0 Li ₂ MoO ₄	2,00	60,0	W_2C , Mo_2C	
	21,0 Li ₂ CO ₃	1,60	70,0	W_2C , Mo_2C	
		1,40	80,0	W_2C , $Mo_{0.42}C_{0.58}$	
		2,50	10,0	W_2C , Mo_2C	
	40,8 Na ₂ WO ₄	3,00	20,0	W_2C , Mo_2C	
4	27,2 Li ₂ WO ₄	2,50	40,0	W_2C , Mo_2C	
4	4,0 Li ₂ MoO ₄	2,00	60,0	W_2C , Mo_2C	
	28,0 Li ₂ CO ₃	2,00	80,0	W_2C , Mo_2C	
		1,90	90,0	W_2C , Mo_2C	
5		2,00	10,0	W_2C , Mo_2C	
	36,0 Na ₂ WO ₄	1,80	20,0	W_2C , Mo_2C	
	24,0 Li ₂ WO ₄	2,00	40,0	W_2C , Mo_2C	
	5,0 Li ₂ MoO ₄	1,80	60,0	W_2C , Mo_2C	
	35,0 Li ₂ CO ₃	1,40	80,0	W_2C , Mo_2C	
		1,20	100,0	W_2C , Mo_2C	

Зависимость состава продуктов электролиза расплавленных систем Na₂WO₄-Li₂WO₄-Li₂MoO₄-Li₂CO₃ от продолжительности электролиза при 1073 К.

В расплавах с концентрационными соотношениями 1 и 2 (табл. 1) происходит резкое обеднение электролита карбонат-ионом, что приводит к выделению

металлического вольфрама и молибдена при небольших количествах пропущенного электричества.

Расплавы с концентрационными соотношениями 4 и 5 (табл. 1) позволяют проводить продолжительные электролизы, однако большая концентрация карбоната лития (28,0 и 35,0 мол.%) приводит к его перерасходу и является, по нашему мнению, не целесообразным.

Средний размер частиц порошка двойного карбида молибдена и вольфрама, для расплавов 1-3 (табл. 1) полученных при 1073 К равен 50-80 нм, и ниже размеров частиц порошка полученных при аналогичных условиях при 1173 К. А для концентрационных соотношений 4 и 5 табл. 1 размеры частиц равны или выше размерам частиц синтезированных при 1173 К.

Из данных табл. 3 и исследований по определению размера частиц можно сделать вывод, что наиболее оптимальным из исследованных расплавов для электрохимического синтеза двойных карбидов молибдена и вольфрама является расплав состава: Na₂WO₄(45,6мол.%)-Li₂WO₄(30,4мол.%)-Li₂MoO₄(3,0мол.%)-Li₂CO₃(21,0мол.%), позволяющий проводить длительный электролиз с получением продукта постоянного состава с наименьшим размером частиц и максимальным выходом по току.

Ультрадисперсные порошки металлов триады железа (с размерами менее 0,1 мкм), однородно распределенные в объеме связующей фазы, приводят к ее дисперсному упрочению и увеличивают способность сплава сопротивляться сдвиговым деформациям. За счет наличия в структуре твердого сплава ультрадисперсных порошков снижается адгезионный износ и повышается стойкость инструмента в 1,3 - 1,8 раза по сравнению с традиционными твердыми сплавами. С другой стороны, спекание твердых сплавов из нанопорошков с металлической связкой позволит получить новые наноструктурные твердые сплавы, которые, кроме резкого повышения твердости и износостойкости (более чем в 2 раза), должны обладать на 30-50% более высокими прочностными свойствами, что позволит расширить области их применения.

Исходя из этого, мы предприняли попытку реализовать электрохимический синтез двойных карбидов (Mo,W)₂-Fe(Co,Ni)-C в расплавленных системах Na₂WO₄-Li₂WO₄-Li₂MoO₄-MeMoO₄-Li₂CO₃ (Me – Fe, Co, Ni) и Na₂WO₄-Li₂WO₄-MeMoO₄-Li₂CO₃ (Me – Fe, Co, Ni), состав которых приведен в таблице 4. Электролиз проводили в гальваностатическом режиме при плотностях катодного тока 2,0-2,5 A/cm^2 и температуре 1073 К.

Таблица 4.

N⁰	Na ₂ WO ₄ ,	Li ₂ WO ₄ ,	Li ₂ MoO ₄ ,	FeMoO ₄ ,	CoMoO ₄ ,	NiMoO ₄ ,	Li ₂ CO ₃ ,
п/п	мол.%	мол.%	мол.%	мол.%	мол.%	мол.%	мол.%
1	45,6	30,4	2,0	1,0	-	-	21,0
2	45,6	30,4	1,0	2,0	-	-	21,0
3	45,6	30,4	-	3,0	-	-	21,0
4	45,6	30,4	2,0	-	1,0	-	21,0
5	45,6	30,4	1,0	-	2,0	-	21,0
6	45,6	30,4	-	-	3,0	-	21,0
7	45,6	30,4	2,0	-	-	1,0	21,0
8	45,6	30,4	1,0	-	-	2,0	21,0
9	45,6	30,4	-	-	-	3,0	21,0

Состав и концентрационные соотношение компонентов в расплаве.

Результаты рентгенофазового и рентгенофлуоресцентного анализа продуктов гальваностатического электролиза расплавленных систем приведенных в табл. 5 показал возможность высокотемпературного электрохимического синтеза твердосплавных композиции на основе двойного карбида молибдена и вольфрама с металлами триады железа при 1073 К.

Экспериментально установлено, что оптимальной для высокотемпературного электрохимического синтеза твердосплавных композиций является катодная плотность тока 2,0-2,3 A/cm². Продуктами высокотемпературного электросинтеза наряду с карбидами W_2C и Mo_2C являются также карбиды: Fe_3W_3C - Fe_4W_2C , Fe_6W_6C , Co_6W_6C , NiC_x и интерметаллид NiW.

Полученные результаты свидетельствуют, что средний размер частиц синтезированных порошков твердосплавных композиций на основе двойных карбидов молибдена и вольфрама с металлами триады железа равен 50-300 нм.

Таблица 5.

Результаты рентгенофазового анализа продуктов электролиза в расплавленных системах $Na_2WO_4(45,6 \text{ мол. }\%)$ -Li₂WO₄(30,4 мол. %)-Li₂MoO₄-MeMoO₄-Li₂CO₃ (Me – Fe, Co, Ni) и $Na_2WO_4(45,6 \text{ мол. }\%)$ -Li₂WO₄(30,4 мол. %)-MeMoO₄-Li₂CO₃ (Me – Fe, Co, Ni) при 1073 К. Продолжительность электролиза 20 мин.

№ п/п	Состав электролита, мол.%	Плотность катодного тока, А/см ²	Напряжение на ванне, В	Фазовый состав
1	2,0 Li ₂ MoO ₄ , 1,0 FeMoO ₄ , 21,0 Li ₂ CO ₃	2,30	2,5-3,5	W ₂ C, Mo ₂ C, Fe ₃ W ₃ C-Fe ₄ W ₂ C
2	1,0 Li ₂ MoO ₄ , 2,0 FeMoO ₄ , 21,0 Li ₂ CO ₃	2,16	2,5-3,5	W_2C , Mo_2C , Fe_6W_6C
3	3,0 FeMoO ₄ , 21,0 Li ₂ CO ₃	2,30	2,5-3,5	W_2C , Mo_2C , Fe_6W_6C
4	2,0 Li ₂ MoO ₄ , 1,0 CoMoO ₄ , 21,0 Li ₂ CO ₃	2,00	2,5-3,5	W_2C , Mo_2C , Co_6W_6C
5	1,0 Li ₂ MoO ₄ , 2,0 CoMoO ₄ , 21, Li ₂ CO ₃	2,00	2,5-3,5	W_2C , Mo_2C , Co_6W_6C
6	3,0 CoMoO ₄ , 21,0 Li ₂ CO ₃	2,30	2,5-3,5	W_2C , Mo_2C , Co_6W_6C
7	2,0 Li ₂ MoO _{4,} 1,0 NiMoO _{4,} 21,0 Li ₂ CO ₃	2,16	2,5-3,5	W ₂ C, Mo ₂ C, NiC _x , NiW
8	1,0 Li ₂ MoO ₄ , 2,0 NiMoO ₄ , 21,0 Li ₂ CO ₃	2,00	2,5-3,5	W ₂ C, Mo ₂ C, NiC _x ,
9	3,0 NiMoO ₄ , 21,0 Li ₂ CO ₃	2,16	2,5-3,5	W ₂ C, Mo ₂ C, NiC _x ,

выводы

 Впервые осуществлено совместное электровосстановление молибдена, вольфрама и углерода в вольфраматно-молибдатно-карбонатных расплавах Na₂WO₄(55,2–36,0 мол.%)–Li₂WO₄(36,8–24,0 мол.%)–Li₂MoO₄(5,0–1,0 мол.%)– Li₂CO₃(35,0–7,0 мол.%) при 1073÷1173К и установлены его закономерности, позволившее реализовать электрохимический синтез двойных карбидов молибдена и вольфрама.

- 2. Разработан способ электрохимического синтеза наноразмерных порошков двойных карбидов молибдена и вольфрама из вольфраматно-молибдатнокарбонатного расплава при 1073 ÷ 1173 К. Определены оптимальные параметры электросинтеза: концентрационный состав расплава, катодная плотность тока, Установлено материалы электродов, температура. оптимальное $[Li_2MoO_4]/[Li_2CO_3]$ pabhoe концентрационное соотношение 1:7 (мол.%). Установлена зависимость фазового состава продукта электролиза от количества пропущенного электричества.
- 3. Установлен фазовый и элементный состав наноразмерных порошков двойных карбидов молибдена и вольфрама. Показано что двойные карбиды димолибдена и дивольфрама представляют собой твердые растворы (Mo₂C·W₂C). Методом лазерного дифракционного анализа определены размеры частиц порошков двойных карбидов: 50 80 нм при 1073 К и 100 180 нм при 1173 К.
- Осуществлен электрохимический синтез двойных карбидов молибдена и вольфрама с металлами триады железа. Найдены оптимальные концентрационные соотношения компонентов расплава и катодная плотность тока для электросинтеза.
- 5. Установлен фазовый и элементный состав наноразмерных порошков двойных карбидов молибдена и вольфрама с металлами триады железа. Показано что эти порошки представляют собой смесь фаз карбидов димолибдена и дивольфрама с карбидами металлов триады железа Fe₃W₃C-Fe₄W₂C, Fe₆W₆C, Co₆W₆C, NiC_x и интерметаллида никеля NiW.
- Методом лазерного дифракционного анализа определены размеры частиц синтезированных нанопорошков на основе двойных карбидов молибдена и вольфрама с металлами триады железа: они лежат в интервале 50 – 300 нм.

По теме диссертационной работы опубликованы следующие работы в журналах, рекомендованных ВАК:

1. Карданов А.Л., Кушхов Х.Б., Адамокова М.Н., Квашин В.А. Исследование совместного электровосстановления ионов вольфрама, молибдена и углерода в

вольфраматно-молибдатно-карбонатных расплавах // Расплавы. – № 6. – 2010. – С. 35-42.

 Карданов А.Л., Кушхов Х.Б., Адамокова М.Н. Электрохимический синтез двойных карбидов молибдена и вольфрама (Mo,W)₂C из вольфраматномолибдатно-карбонатных расплавов // Расплавы. – № 4. – 2012. – С. 65-73.

Прочие публикации:

- Патент RU № 2459015 «Способ получения нанодисперсных порошков двойных карбидов вольфрама и молибдена» / Кушхов Х.Б., Карданов А.Л., Квашин В.А., Адамокова М.Н. // Открытия Изобретения – 2012.
- Карданов А.Л. Электрохимический синтез нанодисперсных порошков на основе карбида вольфрама и молибдена // VI Российская ежегодная конференция молодых научных сотрудников и аспирантов. – 2009 г. – С. 294-297.
- 3. Карданов А.Л., Кушхов Х.Б., Адамокова М.Н., Квашин В.А., Кучмезова Ф.Ю. Электрохимический синтез нанодисперсных порошков на основе карбида вольфрама и молибдена // Ш-я Всероссийская молодежная конференция с элементами научной школы «Функциональные наноматериалы и высокочистые вещества». Тезисы докладов. – Москва. – 2009. – С. 11.
- Kardanov A.L., Kushkhov Kh.B., Adamokova M.N. and Kvashin V.A. Electrochemical Synthesis of functional and constructional composition materials on the based of tungsten and molybdenum carbides and metals of iron triad // 9th International Frumkin Symposium. – M., – 2010. – P. 223.
- 5. Карданов А.Л., Адамокова М.Н., Квашин В.А., Аппаева Е.Ю., Битохова М.А. Электрохимический синтез керамических твердосплавных композиций на основе карбидов молибдена и вольфрама в оксидных расплавах // Материалы Международной научной конференции студентов, аспирантов и молодых ученых «Перспектива–2010». – Нальчик: Каб.-Балк. ун-т, – 2010. – Т. IV. – С. 177–181.
- 6. Карданов А.Л., Кушхов Х.Б., Адамокова М.Н., Битохова М.А., Аппаева Е.Ю. Синтез двойных карбидов вольфрама и молибдена в вольфраматно-молибдатнокарбонатных расплавах // 15 Российская конференция по физической химии и

электрохимии расплавленных и твердых электролитов (с международным участием). – Нальчик. – 2010. – С. 140-143.

- Карданов А.Л., Кушхов Х.Б., Адамокова М.Н., Квашин В.А. Исследование совместного электровосстановления ионов вольфрама, молибдена и углерода в вольфраматно-молибдатно-карбонатных расплавах // 15 Российская конференция по физической химии и электрохимии расплавленных и твердых электролитов (с международным участием). – Нальчик. – 2010. – С. 234-238.
- Kardanov A.L., Kushkhov H.B., Adamokova M.N., Kvashin V.A. Synthesis Functional and Constructional Nanomaterials on a Basis Carbide Tungsten, Molybdenum and Metals of a Triad of Iron in Ionic Melts // Journal of Physics: Conference Series. – V.291. – Issue 1. – 2011. – P. 305-321.
- Карданов А.Л., Кушхов Х.Б., Квашин В.А. Электрохимический синтез двойных карбидов молибдена и вольфрама (Mo,W)₂C // Перспективные инновационные проекты молодых ученых КБР. – Нальчик. – 2011. – С. 16-22.
- 10. Карданов А.Л., Квашин В.А. Электрохимический синтез нанопорошков твердосплавных композиции на основе двойных карбидов молибдена и вольфрама и металлов триады железа // Международная научная конференция студентов, аспирантов и молодых ученых «Перспектива-2012». – Нальчик. – Том III. – 2012. – С. 356-360.
- 11. Карданов А.Л., Кушхов Х.Б. Высокотемпературный электрохимический синтез нанопорошков твердосплавных композиций на основе двойных карбидов молибдена и вольфрама // Материалы II республиканской конференции студентов, аспирантов и молодых ученых «Перспективные инновационные проекты молодых ученых КБР». – Нальчик. – 2012. – С. 52-59.