# НОВОСЕЛОВА Алена Владимировна

# ЭЛЕКТРОХИМИЯ СОЕДИНЕНИЙ ЛАНТАНОИДОВ И ТЕРМОДИНАМИКА ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ В РАСПЛАВЛЕННЫХ ХЛОРИДАХ

Специальность 02.00.05 – Электрохимия

### **АВТОРЕФЕРАТ**

диссертации на соискание ученой степени доктора химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте высокотемпературной электрохимии Уральского отделения РАН

Официальные оппоненты: Ямщиков Леонид Фёдорович,

доктор химических наук, профессор, ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», профессор кафедры редких металлов и наноматериалов

# Яценко Сергей Павлович,

доктор химических наук, профессор, заслуженный деятель науки и техники РФ, ФГБУН Институт химии твердого тела УрО РАН, заведующий лабораторией гетерогенных процессов

# Исаев Владимир Александрович,

доктор химических наук, старший научный сотрудник, ФГБУН Институт высокотемпературной электрохимии УрО РАН, главный научный сотрудник лаборатории электродных процессов

Ведущая организация: Федеральное государственное бюджетное

учреждение науки Институт физической химии и электрохимии имени А.Н. Фрумкина РАН

Защита состоится «11» декабря 2013 года в 13 часов на заседании диссертационного совета Д 004.002.01 при Институте высокотемпературной электрохимии УрО РАН по адресу: Екатеринбург, ул. Академическая, 20, конференц-зал.

Ваши отзывы на автореферат в двух экземплярах, подписанные и заверенные гербовой печатью, просим высылать по адресу: 620990, Екатеринбург, ул. Академическая, 20, Институт высокотемпературной электрохимии УрО РАН, ученому секретарю диссертационного совета Кулик Нине Павловне. E-mail: N.P.Kulik@ihte.uran.ru. Факс +7(343)3745992.

С диссертацией можно ознакомиться в Центральной научной библиотеке Уральского отделения Российской академии наук.

Автореферат разослан « » октября 2013 г.

Ученый секретарь диссертационного совета, кандидат химических наук

### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В последние десятилетия для многих стран, включая Россию, остается актуальной проблема переработки отработавшего ядерного топлива (ОЯТ). Лантаноиды (Ln) присутствуют в высокоактивных отходах в качестве продуктов деления. Они представляют собой нейтронные яды и при регенерации ОЯТ их необходимо отделять от основных компонентов (U, Pu). Близость электрохимических свойств лантаноидов и актинидов (An) осложняет решение этой задачи. Наиболее эффективными способами переработки являются пироэлектрохимические методы с использованием хлоридных расплавов.

Расплавленные хлориды щелочных металлов являются радиационно-стойкими растворителями и обладают широким спектром физико-химических свойств, позволяющим использовать их в качестве технологических сред при переработке ОЯТ пироэлектрохимическим способом, обеспечивающим разделение продуктов деления с малым временем охлаждения и возвращение урана и плутония в топливный цикл. Для успешной реализации этого способа необходимы надежные и исчерпывающие сведения физико-химических прежде И, всего, электрохимических и термодинамических свойствах растворов лантаноидов в солях-растворителях в зависимости от их состава, температуры и положения изучаемого элемента в Периодической системе.

К началу выполнения наших систематических работ по электрохимии лантаноидов в хлоридных расплавах отсутствовало ясное представление о закономерных изменениях электрохимических и термодинамических свойств в таких солевых системах из-за их недостаточной изученности и существенного расхождения экспериментальных данных, имеющихся в литературе.

Диссертационная работа выполнялась в соответствии с приоритетными направлениями фундаментальных исследований в области химических наук и наук о материалах (Постановление Президиума РАН № 7 от 13.01.1998 г.), Программы фундаментальных научных исследований государственных академий наук на 2008-

2012 годы (Распоряжение Правительства РФ № 233-р от 27.02.2008 г.), планами научно-исследовательских работ Института высокотемпературной электрохимии УрО PAH «Комплексное физико-химическое ПО темам: исследование галогенидсодержащих ионных и ионно-электронных расплавов» (№№ гос. регистрации 01.98.00 08238), «Комплексное исследование структуры и физикохимических свойств расплавленных солевых электролитов» (№ гос. регистрации 01.2.00 306925), «Фазовые равновесия и самоорганизация ионов в объёме и поверхностном слое расплавленных электролитов под действием температурного и электрического полей» (№ гос. регистрации 01.2.007 01884), «Синергетические аспекты высокотемпературной физической химии расплавленных электролитов» (№ гос. регистрации 01.2.010 00807) и инициативным проектам Российского фонда фундаментальных исследований (№№ 96-03-32019, 02-03-96455 р урал, 04-03-96103 р урал).

**Цель работы:** установление и систематизация закономерностей изменения электрохимических и термодинамических свойств расплавленных лантаноидсодержащих хлоридных электролитов в зависимости от состава солирастворителя и температуры как научной основы инновационных пироэлектрохимических способов переработки отработавшего ядерного топлива и другого редкоземельного сырья.

# Поставленная цель достигалась решением следующих основных задач:

- исследование кинетики электродных процессов и установление механизма катодного восстановления ионов лантаноидов (Nd<sup>3+</sup>, Tm<sup>3+</sup>, Yb<sup>3+</sup>) до металла на инертных и сплавообразующих электродах в расплавленных хлоридных электролитах;
- изучение влияния температуры и катионного состава соли-растворителя на диффузию ионов  $[LnCl_6]^{3-}$  и способность к комплексообразованию в расплавленных хлоридах щелочных металлов и их смесях;
- получение надежных экспериментальных данных по электрохимическим и

термодинамическим свойствам окислительно-восстановительных реакций, валентным состояниям лантаноидов цериевой (Nd, Sm, Eu) и иттриевой (Tm, Yb) подгрупп в хлоридных расплавах и установление закономерностей их изменения в зависимости от температуры, ионного потенциала катионов соли-растворителя и положения лантаноида в Периодической системе.

### Научная новизна.

- 1. На основании результатов изучения кинетики электродных процессов установлен механизм катодного восстановления ионов Nd<sup>3+</sup>, Tm<sup>3+</sup>, Yb<sup>3+</sup> до металла в расплавленных хлоридных электролитах разного катионного состава на инертных и активных электродах.
- 2. Впервые выведены обобщенные уравнения зависимости коэффициентов диффузии ионов лантаноидов (на примере  $\mathrm{Tm}^{3+}$  и  $\mathrm{Yb}^{3+}$ ) и условных стандартных окислительно-восстановительных потенциалов  $E^*_{\mathrm{Ln(III)/Ln(II)}}$  (Ln = Sm, Eu, Tm, Yb) от температуры и катионного состава соли-растворителя, позволившие прогнозировать их значения в неизученных системах.
- 3. Впервые методами вольтамперометрии и потенциометрии получены согласующиеся между собой значения условных стандартных окислительновосстановительных потенциалов  $E^*_{\text{Ln(III)/Ln(II)}}$  (Ln = Nd, Sm, Eu, Tm, Yb) в хлоридных расплавах и найдены их зависимости от ионного потенциала катионов соли-растворителя и температуры.
- 4. Впервые выявлена периодичность изменения экспериментально найденных термодинамических свойств окислительно-восстановительных реакций  $LnCl_{2(\kappa)} + \frac{1}{2} Cl_{2(r.)} \Leftrightarrow LnCl_{3(\kappa)}$  в соответствии с периодическим характером заполнения 4f-орбиталей лантаноидов цериевой и иттриевой подгрупп.

# Практическая значимость работы.

1. Полученные электрохимические и термодинамические данные могут быть использованы при разработке перспективной технологии пироэлектрохимической переработки ОЯТ в солевых расплавах как составной

части замкнутого топливного цикла.

- 2. Рассчитанные кинетические и термодинамические параметры необходимы для усовершенствования электрохимических процессов получения, разделения и рафинирования редкоземельных металлов электролизом хлоридных расплавов.
- 3. Предложенные эмпирические зависимости кинетических и термодинамических характеристик (коэффициенты диффузии, условные стандартные окислительно-восстановительные потенциалы, изменения энергии Гиббса, константы равновесия) от ионного потенциала катионов солирастворителя и температуры позволяют прогнозировать электрохимические свойства соединений лантаноидов в неизученных системах.
- 4. Полученные фундаментальные сведения могут быть рекомендованы для использования в качестве справочных данных.

Методы исследования. При выполнении работы были использованы информативные электрохимические методы исследования. Они базируются на использовании разнообразных вольтамперометрических методов и измерении электродвижущих сил (ЭДС) гальванических элементов. Потенциометрия при обеспечении близких к равновесным условий дает возможность изучить термодинамические свойства веществ в солевых расплавах при повышенных температурах без сложных дополнительных расчетов. Нестационарные методы позволяют получать эту информацию, а также дополнительные сведения, связанные с кинетикой электродных процессов и транспортными свойствами электролитов, за короткое время, что сводит к минимуму влияние различных побочных процессов на достоверность результатов. Разработаны надежные методики изучения кинетики электродных процессов методами линейной, циклической, квадратно-волновой, полуинтегральной, дифференциально-импульсной вольтамперометрии определения окислительно-восстановительных потенциалов растворов соединений лантаноидов потенциометрическими методами (ЭДС, хронопотенциометрия) в хлоридных расплавах в интервале температур от 550 до 1230 К, позволяющие получать хорошо согласующиеся и воспроизводимые данные.

### На защиту выносятся:

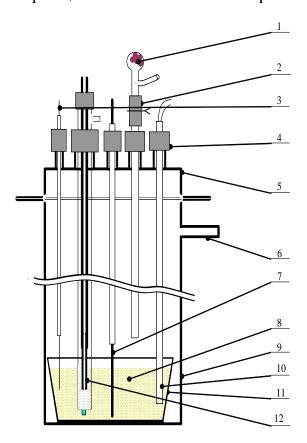
- 1. Результаты изучения кинетики электродных процессов и механизма катодного восстановления ионов лантаноидов  $(Nd^{3+}, Tm^{3+}, Yb^{3+})$  до металла на инертных и сплавообразующих электродах в расплавленных хлоридных электролитах.
- 2. Результаты расчета коэффициентов диффузии ионов  $[LnCl_6]^{3-}$  в хлоридных расплавах разного катионного состава.
- 3. Результаты прецизионных измерений условных стандартных окислительновосстановительных потенциалов неодима, самария, европия, тулия, иттербия в расплавленных хлоридах щелочных металлов в зависимости от соотношения концентраций их ионов разных степеней окисления, катионного состава соли-растворителя и температуры.
- 4. Влияние ионного потенциала катионов соли-растворителя на термодинамические свойства окислительно-восстановительных реакций соединений лантаноидов в расплавленных хлоридах.
- 5. Периодичность изменения термодинамических свойств соединений лантаноидов цериевой и иттриевой подгрупп в хлоридных расплавах.

Апробация результатов. Основные результаты работы доложены и обсуждены на 18 российских и 28 международных конференциях: X Кольском семинаре по электрохимии редких металлов (Апатиты, 2000); EUCHEM Conferences on Molten Salts (Karrebæksminde, Denmark, 2000; Wrocław, Poland, 2004); NATO Advanced Study Institute "Molten Salts: From Fundamental to Applications" (Kas, Turkey, 2001); I Всероссийской молодежной научной конференции по фундаментальным проблемам радиохимии и атомной энергетики (Нижний Новгород, 2001); III, V научно-технических конференциях молодых ученых и аспирантов (Новомосковск, 2001; 2003); XII, XIV, XV Российских конференциях по физической химии и

электрохимии расплавленных твердых электролитов (Нальчик, 2001; И Екатеринбург, 2007; Нальчик, 2010); 6th, 7th, 9th International Symposia on Molten Salts Chemistry and Technology (Shanghai, China, 2001; Toulouse, France, 2005; Trondheim, Norway, 2011); XIV, XV Международных конференциях по химической термодинамике в России (Санкт-Петербург, 2002; Москва, 2005); Втором семинаре СО РАН - УрО РАН «Новые неорганические материалы и химическая термодинамика» (Екатеринбург, 2002); International Jomar Thonstad Symposium (Trondheim, Norway, 2002); II Международной конференции «Металлургия цветных и редких металлов» (Красноярск, 2003); конференции «Современные аспекты электрокристаллизации металлов» (Екатеринбург, 2005); Первом Российском научном форуме Демидовские чтения на Урале (Екатеринбург, 2006); ЕИСНЕМ Conference on Molten Salts and Ionic Liquids (Copenhagen, Denmark, 2008); Plutonium Futures – The Science 2008. A Topical Conference on Plutonium and Actinides (Dijon, France, 2008); XII, XIII Российских конференциях «Строение и свойства металлических и шлаковых расплавов» (Екатеринбург, 2008; 2011); 6-ой, 7-ой Международных научно-практических конференциях «Исследование, разработка и применение высоких технологий в промышленности» (Санкт-Петербург, 2008; 2009); OECD/NEA 10th, 11th Information Exchange Meetings on Actinide and Fission Product Partitioning and Transmutation (Mito, Japan, 2008; San Francisco, USA, 2010); Joint Symposium on Molten Salts (Kobe, Japan, 2008); Международной научнотехнической конференции «Металлургия легких и тугоплавких металлов» (Екатеринбург, 2008); XIX Российской молодежной научной конференции «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2009); XVII, XVIII International Conferences on Chemical Thermodynamics in Russia (Kazan, 2009; Samara, 2011); 6-ой, 7-ой Российских конференциях по радиохимии (Озерск, 2009; Димитровград, 2012); VIII Finnish-Russian Symposium on Radiochemistry (Turku, Finland, 2009); Всероссийской конференции «Исследования в области переработки и утилизации техногенных образований и отходов» (Екатеринбург,

2009); Международной научно-практической конференции молодых ученых и студентов (Екатеринбург, 2009); International EU-RUSSIA/CIS Conference on technologies of the future (Madrid, Spain, 2010); 4-ой Российской школе по радиохимии и ядерным технологиям (Озерск, 2010); Международном научнопромышленном симпозиуме «Уральская горная школа – регионам» (Екатеринбург, 2010); III International Pyroprocessing Research Conference (Dimitrovgrad, 2010); Международной научно-практической конференции «Уральская горная школа -(Екатеринбург, 2011; 2012); Российской научно-технической регионам» конференции «Актуальные проблемы радиохимии и радиоэкологии» (Екатеринбург, 2011); 12th Information Exchange Meeting on Partitioning and Transmutation (Prague, Czech Republic, 2012).

**Публикации.** Основное содержание диссертации отражено в 45 научных публикациях, включая главу в зарубежной монографии, 26 статей в ведущих международных и российских журналах, рекомендованных ВАК, 18 статей в других периодических изданиях, а также в 58 тезисах докладов российских и международных конференций.


Личный вклад соискателя. Постановка задач, очистка реактивов, синтез безводных трихлоридов самария, европия, тулия и иттербия, определение концентрации двухвалентных лантаноидов застывших В солевых усовершенствование оригинальных ячеек для электрохимических измерений, проведение высокотемпературных экспериментов, планирование интерпретация и обобщение полученных результатов, написание научных работ выполнены лично автором.

Структура и объем работы. Диссертация состоит из введения, шести глав, выводов и списка цитируемой литературы. Работа изложена на 249 страницах машинописного текста, содержит 104 рисунка, 47 таблиц, список цитируемой литературы включает 218 наименований.

### СОДЕРЖАНИЕ РАБОТЫ

**Во введении** обоснованы актуальность работы, выбор объектов и методов исследования; сформулированы цели и задачи, научная новизна, практическая значимость полученных результатов. Перечислены положения, выносимые на защиту, приведены сведения о публикациях и апробации результатов, указаны личный вклад автора, структура и объем диссертации.

В первой главе рассмотрены электрохимические основы стационарных и нестационарных методов исследования растворов соединений лантаноидов в солевых расплавах. Особое внимание в работе уделено чистоте приготовления исходных реактивов и методикам проведения высокотемпературных экспериментов, исключающим взаимодействие ионов лантаноидов с конструкционными материалами электрохимических ячеек и кислородсодержащими примесями. Принципиальные схемы электрохимических устройств приведены на рис. 1 и 2.



- 1 навеска деполяризатора;
- 2 шлюзовое устройство со сбрасывателем;
- 3 рабочий электрод;
- 4 уплотнения из вакуумной резины;
- 5 кварцевая крышка;
- 6 патрубок;
- 7 противоэлектрод;
- 8 солевой расплав;
- 9 кварцевая пробирка;
- 10 Pt/Pt-Rh термопара в кварцевом чехле;
- 11 тигель из стеклоуглерода;
- 12 хлорный электрод сравнения

Рисунок 1 – Схема экспериментальной ячейки для кинетических исследований

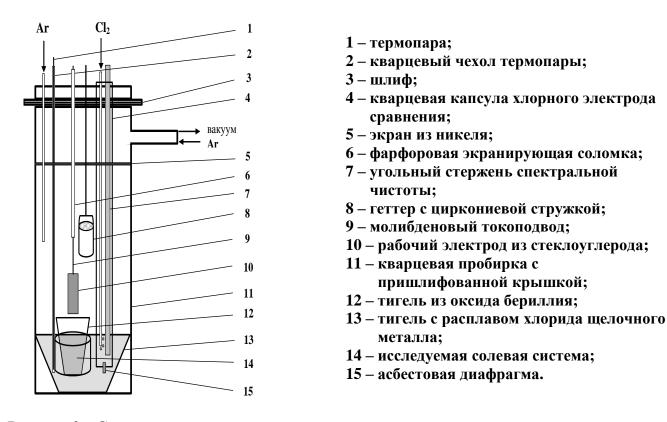



Рисунок 2 – Схема экспериментальной ячейки для потенциометрических измерений

Вторая глава посвящена изучению электрохимического поведения ионов Nd<sup>3+</sup>, Tm<sup>3+</sup> и Yb<sup>3+</sup> на инертных электродах в расплавленных хлоридах щелочных металлов. Особое внимание уделено механизму электродных процессов. На рис. 3 представлена типичная вольтамперограмма растворителя. Она имеет широкое электрохимическое окно, которое лимитируется восстановлением ионов щелочных металлов соли-растворителя и окислением ионов хлора до газообразного состояния. Совпадение катодной и анодной ветви вольтамперограммы свидетельствует об отсутствии примесей в фоновом электролите.

При введении в фоновый электролит трихлорида неодима или тулия (рис. 5) на циклических вольтамперограммах (ЦВА) фиксируются два катодных пика тока и соответствующие им два анодных пика тока относительно хлорного электрода сравнения. Потенциостатический электролиз при потенциалах первого катодного пика тока не приводил к образованию твердой фазы на поверхности электрода,

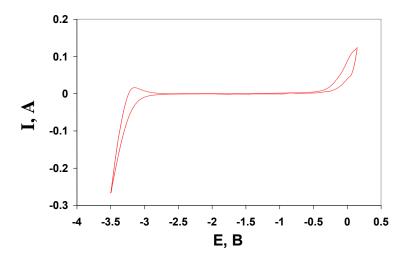



Рисунок 3 — Циклическая вольтамперограмма фонового расплава 3LiCl-2KCl при температуре 723 K и скорости сканирования 0,1 B/c

а рабочий электрод не претерпевал каких-либо визуальных изменений, в то время как поляризация рабочего электрода при потенциалах второго катодного пика тока приводила к появлению плато на зависимости Е-т, что свидетельствовало об образовании твердой фазы на поверхности катода. Рентгенофазовый анализ (РФА) катодного осадка показал наличие металлического неодима (тулия) на поверхности молибденового катода.

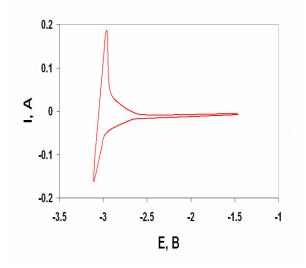



Рисунок 4 — Циклическая вольтамперограмма расплава LiCl-KCl-CsCl-NdCl $_3$  (m(NdCl $_3$ ) = 0,12 моль/кг), полученная при температуре 773 K на Мо электроде при скорости сканирования 0,2 B/c

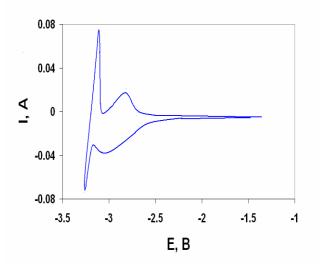



Рисунок 5 — Циклическая вольтамперограмма расплава NaCl-2CsCl-TmCl $_3$  (m(TmCl $_3$ ) = 9,83·10<sup>-3</sup> моль/кг), полученная при температуре 823 K на Мо электроде при скорости сканирования 0,2 B/c

Установлено, что для первой стадии процесса зависимость катодного и анодного потенциалов пика тока от логарифма скорости сканирования (v) обратима для неодима и частично обратима (v < 0,1 B/c) для тулия (рис. 6). Вторая стадия процесса — необратима как для неодима, так и для тулия.

Методами линейной и квадратно-волновой вольтамперометрии рассчитано число электронов (n) электродной реакции первой стадии процесса восстановления ионов  $Nd^{3+}$  и  $Tm^{3+}$ . Найдено, что в пределах ошибки эксперимента n равно единице.

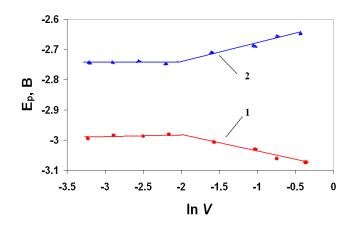



Рисунок 6 – Зависимости потенциала катодного (1) и анодного (2) пиков для процесса перезаряда от скорости сканирования в расплаве NaCl-2CsCl-TmCl<sub>3</sub> (m(TmCl<sub>3</sub>) = 9,83·10<sup>-2</sup> моль/кг), полученные при 823 К на Мо рабочем электроде

На основе стандартных диагностических критериев и теории циклической вольтамперометрии электродные процессы восстановления ионов Nd<sup>3+</sup> (Tm<sup>3+</sup>) до Nd<sup>2+</sup> (Tm<sup>2+</sup>) являются обратимыми для неодима (частично обратимыми для тулия) и контролируются массопереносом. Процессы электрохимического выделения металлов необратимы и контролируются скоростью переноса заряда. Катодные реакции протекают по следующей схеме:

$$Ln^{3+} + \bar{e} = Ln^{2+} \tag{1}$$

$$Ln^{2+} + 2\bar{e} = Ln \tag{2}$$

Изучена стабильность образующихся дихлоридов неодима (тулия) в расплавленных хлоридах щелочных металлов. На рис. 7 представлены результаты исследований устойчивости ионов неодима(II) в расплавах LiCl-KCl-CsCl и CsCl.

При высоких температурах (кривые 1, 2) зависимости потенциала  $E_{Nd(III)/Nd(II)}$  при заданном отношении концентраций  $[Nd^{3+}]/[Nd^{2+}]$  смещаются в сторону более электроположительных значений из-за протекания реакций (3) и (4) ( $\Delta G_3 = -59.9$ 

кДж/моль,  $\Delta G_4 = -348,4$  кДж/моль) и достигают величин стационарного потенциала рабочего электрода за очень короткий промежуток времени при высоких температурах. При низких температурах (кривая 3) реакция диспропорционирования не протекает ( $\Delta G_3 = 22,3$  кДж/моль).

$$3NdCl_2 = 2NdCl_3 + Nd \tag{3}$$

$$2 \text{ Nd} + \frac{3}{2} \text{SiO}_2 + 2 \text{LiCl} = 2 \text{ NdOCl} + \frac{3}{2} \text{Si} + \text{Li}_2 \text{O}$$
(4)

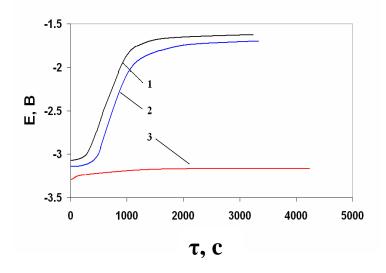
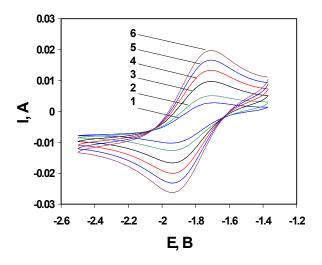



Рисунок 7 — Равновесные потенциалы  $E_{Nd^{3+}/Nd^{2+}}$  при разных отношениях концентраций [Nd<sup>3+</sup>]/[Nd<sup>2+</sup>] в расплавленных LiCl-KCl-CsCl (1, 3) и CsCl (2) в зависимости от температуры: 1-T=943 K,  $\ln[Nd^{3+}]/[Nd^{2+}]=2,344$ ; 2-T=943 K,  $\ln[Nd^{3+}]/[Nd^{2+}]=1,098$ ; 3-T=558 K,  $\ln[Nd^{3+}]/[Nd^{2+}]=1,098$ 

При введении в расплав трихлорида иттербия на ЦВА (рис. 8) наблюдается появление одного катодного и одного анодного пика тока в исследуемом электрохимическом окне. Потенциостатический электролиз при потенциалах катодного пика тока не приводил к образованию твердой фазы на поверхности электрода, а сам рабочий электрод не претерпевал каких-либо визуальных изменений. Аналогичные результаты были зафиксированы во всех исследованных расплавленных хлоридах щелочных металлов.

Использование метода квадратно-волновой вольтамперометрии (рис. 9) для расчета n по уравнению (5) реакции катодного восстановления ионов  $Yb^{3+}$  показало, что процесс протекает в одну стадию и является одноэлектронным.


$$W_{1/2} = 3.52 \frac{RT}{nF} \tag{5}$$

На основе диагностических критериев и теории ЦВА электродный процесс восстановления ионов Yb<sup>3+</sup> до металла можно представить следующей схемой:

$$Yb^{3+} + \bar{e} = Yb^{2+} \tag{6}$$

$$M^+ + \bar{e} = M$$
 (где  $M -$ катион щелочного металла) (7)

$$Yb^{2+} + 2M = Yb + 2M^{+}$$
 (8)



0 -0.002 -0.004 $W_{1/2}$ -0.006 -0.008 -0.01 -0.012 -0.014 -2.25 -1.75 -2.75 -2.5 -1.5 -1.25 -1 E, B

Рисунок 8 – Циклические вольтамперограммы для процесса перезаряда ионов иттербия в расплаве CsCl-YbCl<sub>3</sub> (m(YbCl<sub>3</sub>) =  $3,70\cdot10^{-2}$  моль/кг), полученные при 973 K на W электроде при v, B/c: 1-0,06; 2-0,1; 3-0,2; 4-0,3; 5-0,4; 6-0,5

Рисунок 9 — Квадратно-волновая вольтамперограмма расплава LiCl-KCl-YbCl<sub>3</sub> (m(YbCl<sub>3</sub>) = 9,41·10<sup>-2</sup> моль/кг), полученная при температуре 723 К и частоте 12 Гц на W электроде

Установлено, что дихлориды тулия и иттербия не принимают участия в реакции диспропорционирования во всем исследуемом интервале температур.

Коэффициенты диффузии (D) ионов [LnCl<sub>6</sub>]<sup>3-</sup> в расплавленных хлоридах щелочных металлов разного катионного состава рассчитывали по уравнению Рендлса-Шевчика (9) для случая обратимого процесса, используя результаты ЦВА:

$$I_{P} = 0.446(nF)^{3/2} C_{o} S \left(\frac{D \nu}{RT}\right)^{1/2}$$
(9)

В табл. 1 представлены результаты расчета коэффициентов диффузии ионов  $[YbCl_6]^{3-}$  в электролитах разного состава. Во всех исследуемых системах коэффициенты диффузии уменьшаются с увеличением эффективного радиуса катионов соли-растворителя и с понижением температуры. Это можно объяснить

увеличением прочности комплексных группировок [ $LnCl_6$ ]<sup>3-</sup> в ряду от LiCl к CsCl и уменьшением вклада перескокового механизма в общий процесс диффузии.

Таблица 1 — Коэффициенты диффузии ионов  $[YbCl_6]^{3-}$  и энергия активации процесса диффузии в расплавленных хлоридах щелочных металлов при разных температурах

|                    |      | $D \cdot 10^5$ ,                      | -E <sub>A</sub> ,             |
|--------------------|------|---------------------------------------|-------------------------------|
| Соль-растворитель  | T, K | $cm^2 \cdot c^{-1}$                   | –∟ <sub>А</sub> ,<br>кДж/моль |
|                    | 723  | $1.0 \pm 0.1$                         | 38,3                          |
| LiCl-KCl           |      | · · · · · · · · · · · · · · · · · · · | 30,3                          |
| (ЦВА)              | 848  | $2.7 \pm 0.1$                         |                               |
|                    | 973  | $5,4 \pm 0,1$                         |                               |
| NaCl-KCl           | 973  | $2,8 \pm 0,2$                         |                               |
| (ЦВА)              | 1023 | $3,2 \pm 0,2$                         | 45,4                          |
| (цва)              | 1073 | $4,1 \pm 0,2$                         |                               |
| N-Cl VCl C-Cl      | 793  | $0.3 \pm 0.1$                         |                               |
| NaCl-KCl-CsCl      | 873  | $0.7 \pm 0.1$                         | 51,3                          |
| (ЦВА)              | 973  | $1,4 \pm 0,1$                         | ·                             |
| NaCl-KCl-CsCl      | 793  | $0.4 \pm 0.1$                         |                               |
| (Полуинтегральная  | 873  | $0.7 \pm 0.1$                         | 50,1                          |
| вольтамперометрия) | 973  | $1,5 \pm 0,1$                         |                               |
| CsCl               | 973  | $0.9 \pm 0.1$                         |                               |
|                    | 1023 | $1,2 \pm 0,1$                         | 54,4                          |
| (ЦВА)              | 1073 | $1,7 \pm 0,1$                         |                               |
| CsCl               | 973  | $0.9 \pm 0.1$                         |                               |
| (Полуинтегральная  | 1023 | $1,3 \pm 0,1$                         | 54,4                          |
| вольтамперометрия) | 1073 | $1,7 \pm 0,1$                         |                               |
| CsCl               | 973  | $0.9 \pm 0.1$                         |                               |
| (Моделирование     | 1023 | $1,2 \pm 0,1$                         | 54,3                          |
| методами GPES)     | 1073 | $1,6 \pm 0,1$                         |                               |

Зависимость коэффициентов диффузии ионов  $[YbCl_6]^{3-}$  от обратной температуры и ионного потенциала катионов соли-растворителя описывается уравнением (10) и графически представлена на рис. 10.

$$\lg D_{\text{FbCl}_6} = -2.38 - \frac{3596}{T} + \frac{\left(0.0071 + \frac{158}{T}\right)}{r} \pm 0.02 \tag{10}$$

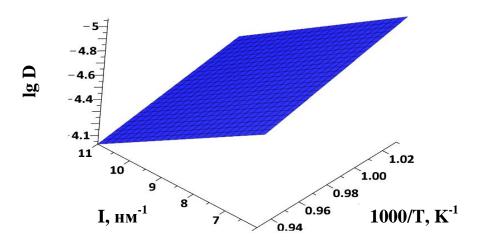



Рисунок 10 – Зависимость коэффициентов диффузии ионов [YbCl<sub>6</sub>]<sup>3-</sup> от обратной температуры и ионного потенциала катионов соли-растворителя в расплавленных хлоридах щелочных металлов

Условные стандартные окислительно-восстановительные потенциалы лантаноидов ( $E^*_{\text{Ln(III)/Ln(II)}}$ ) рассчитывали по уравнениям (11-13), используя данные циклической вольтамперометрии:

$$E_{Ln(III)/Ln(II)}^* = E_P^C + 1,11 \frac{RT}{F} + \frac{RT}{F} \ln \left( \frac{D_{Ln(II)}}{D_{Ln(III)}} \right)^{1/2}$$
(11)

$$E_{Ln(III)/Ln(II)}^* = E_P^A - 1,11 \frac{RT}{F} + \frac{RT}{F} \ln \left( \frac{D_{Ln(II)}}{D_{Ln(III)}} \right)^{1/2}$$
(12)

$$E_{Ln(III)/Ln(II)}^* = \frac{(E_p^C + E_p^A)}{2} + \frac{RT}{F} \ln \left( \frac{D_{Ln(II)}}{D_{Ln(III)}} \right)^{1/2}$$
(13)

Температурные зависимости  $E^*_{\text{Yb(III)/Yb(II)}}$  описываются следующими эмпирическими уравнениями:

$$E_{Yb(III)/Yb(II)}^* = -(1.915 \pm 0.005) + (3.5 \pm 0.2) \cdot 10^{-4} T, B \quad \text{(Li-K)Cl}_{9BT} \quad [723-973 \text{ K}] \quad (14)$$

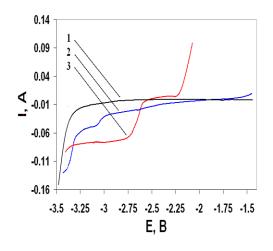
$$E_{Yb(III)/Yb(II)}^* = -(2,031 \pm 0,005) + (3,7 \pm 0,2) \cdot 10^{-4} T$$
,  $B$  (Na-K)Cl<sub>3KB</sub> [973-1075 K] (15)

$$E_{Yb(III)/Yb(II)}^* = -(2,192 \pm 0,016) + (4,3 \pm 0,2) \cdot 10^{-4}T$$
, B (Na-K-Cs)Cl<sub>9BT</sub> [723-1073 K] (16)

$$E_{Yb(III)/Yb(II)}^* = -(2,262 \pm 0,004) + (4,2 \pm 0,2) \cdot 10^{-4} T, B$$
 CsCl [973-1079 K] (17)

Полученные результаты хорошо согласуются с современными представлениями о влиянии эффективного радиуса катионов соли-растворителя на окислительно-восстановительные потенциалы многих солевых систем, которые содержат многозарядные катионы. При этом наблюдается линейная зависимость  $E^*_{\rm Yb(III)/Yb(II)}$  от ионного потенциала катионов соли-растворителя в пределах погрешности экспериментальных определений.

Зависимость  $E^*_{Yb(III)/Yb(II)}$  от радиуса катионов соли-растворителя при 973 К описывается эмпирическим уравнением:


$$E_{Yb(III)/Yb(II)}^* = -(2,289 \pm 0,005) + (0,073 \pm 0,004)/r_{M^+} \pm 0,003 \quad B$$
 (18)

Используя уравнение (18) можно оценить значения  $E^*_{\text{Yb(III)/Yb(II)}}$  для неисследованных систем.

**В третьей главе** приведены результаты исследования электрохимического поведения ионов  $Tm^{3+}$  и  $Yb^{3+}$  на активном алюминиевом электроде в расплавленных хлоридах щелочных металлов. Согласно фазовым диаграммам в равновесных условиях в системе Al-Tm образуется пять интерметаллических соединений:  $Al_3Tm$ ,  $Al_2Tm$ , AlTm,  $Al_2Tm_3$ ,  $AlTm_2$ , а в системе Al-Yb – два:  $Al_3Yb$ ,  $Al_2Yb$ .

На рис. 11 и 12 представлены линейные вольтамперограммы катодного восстановления ионов  $Tm^{3+}$  и  $Yb^{3+}$  на инертном и активном электродах. Замена инертного Mo (W) электрода на активный Al приводит к смене механизма катодного восстановления ионов  $Tm^{3+}$  ( $Yb^{3+}$ ) во всех изученных расплавах (рис. 11, кривые 2, 3; рис. 12, кривые 1, 2), при этом процесс восстановления ионов  $Tm^{3+}$  протекает в одну стадию, а ионов  $Yb^{3+}$  – в две. Для определения механизма исследуемых процессов был использован метод потенциостатического электролиза при потенциалах пика тока восстановления ионов  $Tm^{3+}$  ( $Yb^{3+}$ ). Методом РФА было установлено, что при электролизе тулийсодержащего электролита при потенциале -2,6 В (рис. 11, кривая 3) на поверхности рабочего электрода происходит образование смеси интерметаллидов  $Al_3Tm$  и  $Al_2Tm$  (рис. 13). Одна из причин

отсутствия в катодном продукте соединений AlTm,  $Al_2Tm_3$  и  $AlTm_2$  связана с проведением экспериментов в неравновесных условиях, поэтому на рабочем электроде происходит образование, в первую очередь, богатых по алюминию соединений, что и было подтверждено результатами рентгенофазового анализа.



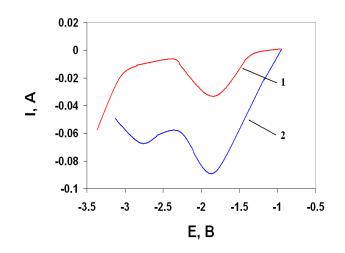



Рисунок 11 — Линейные вольтамперограммы расплавов NaCl-2CsCl (1) и NaCl-2CsCl-TmCl<sub>3</sub> (2, 3), полученные при 823 K на Мо (1, 2) и Al (3) электродах при v = 0,01 B/c

Рисунок 12 — Линейные вольтамперограммы расплава NaCl-KCl-CsCl-YbCl<sub>3</sub>, полученные при 873 K на W (1) и Al (2) электродах при v = 0,08 B/c

В случае исследования иттербийсодержащего электролита (рис. 12, кривая 2) при потенциале -1,8 В на катоде не наблюдается выделения твердой фазы, а при потенциале -2,8 В происходит образование смеси интерметаллидов  $Al_3$ Yb и  $Al_2$ Yb.

Анализ полученных результатов позволил предложить следующий механизм восстановления ионов  $Tm^{3+}$  ( $Yb^{3+}$ ) в хлоридных расплавах на активном алюминиевом электроде. Для ионов  $Tm^{3+}$  процесс протекает в одну стадию с образованием смеси интерметаллидов  $Al_2Tm$  и  $Al_3Tm$  с деполяризацией около 0,6 В по реакции (19), а для ионов  $Yb^{3+}$  – по реакциям (6) и (20):

$$Tm^{3+} + nAl + 3\bar{e} = Al_n Tm,$$
 (19)

$$Yb^{2+} + nAl + 2\bar{e} = Al_nYb, \tag{20}$$

где *п* равно 2 и 3.

При выделении иттербия на алюминии вследствие снижения его активности в сплаве величина деполяризации превышает 0,6 B, что позволяет получать металлический иттербий электролизом хлоридных расплавов.

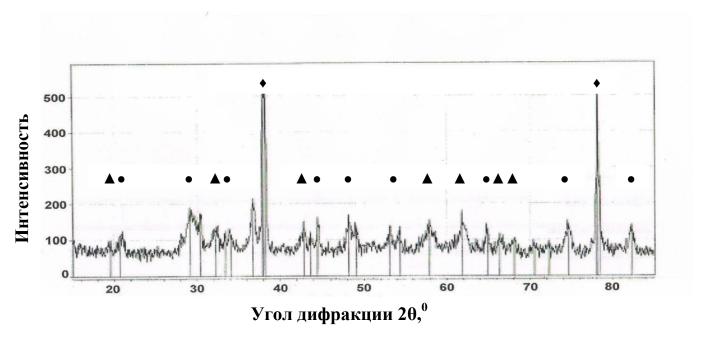



Рисунок 13 — Дифрактограмма катодного осадка, полученного в режиме потенциостатического электролиза при потенциале -2.8 В на активном алюминиевом электроде при температуре 823 К в расплаве NaCl-2CsCl-TmCl<sub>3</sub>.  $\bullet$  — Al<sub>3</sub>Tm;  $\blacktriangle$  — Al<sub>2</sub>Tm

**Четвертая глава** посвящена потенциометрическому исследованию растворов соединений лантаноидов цериевой подгруппы (Nd, Sm, Eu) в расплавленных хлоридах щелочных металлов и расчету основных термодинамических параметров окислительно-восстановительной реакции:

$$LnCl_{2(\kappa)} + \frac{1}{2} Cl_{2(\Gamma)} \Leftrightarrow LnCl_{3(\kappa)}$$
(21)

Измерены электродвижущие силы гальванических элементов

$$Mo_{(T.)}|[LnCl_3, LnCl_2, MCl]_{(p.)}||MCl_{(p.)}|Cl_{2(\Gamma.)}, C_{(T.)}$$
 (22)

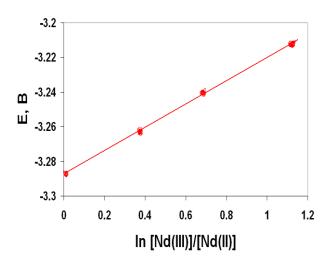
в зависимости от соотношения концентраций три- и дихлорида лантаноидов (Ln = Nd, Sm, Eu), катионного состава соли-растворителя и температуры. В измеряемую величину ЭДС наряду с искомой разностью электродных потенциалов входит также термо-ЭДС между молибденовым и угольным токоподводами к электродам ячейки.

Все опытные значения электродвижущих сил приводятся с учетом термо-ЭДС.

Как показали хронопотенциометрические исследования использовать метод электродвижущих сил для изучения реакции  $Nd^{3+} + \bar{e} = Nd^{2+}$  возможно только при низких температурах. В связи с этим в качестве растворителя нами была выбрана эвтектическая смесь LiCl-KCl-CsCl с температурой плавления 533 К.

Экспериментальные значения, полученные на индифферентном молибденовом электроде в эвтектическом расплаве LiCl-KCl-CsCl-NdCl<sub>3</sub> при 668 K, показаны на рис. 14. В используемой системе координат окислительно-восстановительный потенциал ( $E_{Nd(III)/Nd(II)}$ ) линейно зависит от логарифма отношения концентраций трихлорида к дихлориду ( $ln[Nd^{3+}]/[Nd^{2+}]$ ) и описывается уравнением Нернста. Данные, обработанные методом наименьших квадратов, имеют следующий вид:

$$E_{Nd(III)/Nd(II)} = -(3,291 \pm 0,001) + (0,056 \pm 0,001) \ln([Nd^{3+}]/[Nd^{2+}]) \pm 0,001 \text{ B.}$$
 (23)


Из предлогарифмического коэффициента уравнения (23) определено число электронов, участвующих в электровосстановлении  $NdCl_3$ . Значение n равно  $1,02\pm0,01$  и находится в хорошем согласии с результатами нестационарных методов.

Температурная зависимость условного стандартного редокс-потенциала неодима  $(E^*_{\mathrm{Nd(III)/Nd(II)}})$  представлена на рис. 15. В изученном интервале температур она аппроксимируется прямой и описывается эмпирическим уравнением:

$$E^*_{Nd(III)/Nd(II)} = -(3.855 \pm 0.016) + (8.7 \pm 0.2) \times 10^{-4} T \pm 0.003 \quad B \quad [603-723 \text{ K}]$$
 (24)

Изучение равновесия окислительно-восстановительных реакций можно проводить разными способами. Активность (а в применении к разбавленным растворам концентрации) ионов лантаноидов разных степеней окисления можно менять, задавая разное парциальное давление хлора над содержащими их хлоридными расплавами. Поэтому существует феноменологическая связь между условными стандартными окислительно-восстановительными потенциалами лантаноидов и парциальным давлением хлора:

$$\frac{RT}{2F} \ln p_{Cl_2} = E_{Ln^{3+}/Ln^{2+}}^* + \frac{RT}{F} \ln \frac{[Ln^{3+}]}{[Ln^{2+}]}$$
(25)



-3.22 -3.22 -3.26 -3.28 -3.28 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70

Рисунок 14-3ависимость окислительновосстановительного потенциала неодима от логарифма отношения концентраций  $[Nd^{3+}]$  и  $[Nd^{2+}]$  при 668 К в расплавленной эвтектике LiCl-KCl-CsCl. Начальная концентрация  $[Nd^{3+}]=4,19$  мол. %

Рисунок 15 — Температурная зависимость условного стандартного окислительно-восстановительного потенциала  $E_{\rm Nd}^{*}$   $_{\rm Nd}^{3+}$   $_{\rm Nd}^{2+}$  в эвтектическом расплаве LiCl-KCl-CsCl. Начальная концентрация [Nd<sup>3+</sup>] = 4,19 мол. %

Измеренные значения  $E_{\text{Nd}/\text{Nd}}^{*,3+}$  позволяют рассчитать основные термодинамические характеристики окислительно-восстановительной реакции (21). Они представлены в табл. 2.

Таблица 2 — Условные стандартные значения изменения энергии Гиббса, энтальпии и энтропии, коэффициенты активности  $NdCl_3$ , условные константы равновесия реакции (21) и равновесное парциальное давление хлора над расплавленной эвтектической смесью LiCl-KCl-CsCl при разных температурах

| Термодинамические<br>характеристики | 573 K                | 623 K                  | 673 K                  | 723 K                  |
|-------------------------------------|----------------------|------------------------|------------------------|------------------------|
| $E^*$ , B                           | - 3,356              | -3,313                 | - 3,269                | - 3,226                |
| $\Delta G^*$ , кДж/моль             | - 323,9              | - 319,7                | - 315,5                | - 311,3                |
| $\Delta H^*$ , кДж/моль             | - 372,0              |                        |                        |                        |
| $\Delta S^*$ , Дж/К·моль            | - 84,0               |                        |                        |                        |
| $\gamma_{NdCl_3}$                   | 1,5·10 <sup>-3</sup> | 4,4·10 <sup>-3</sup>   | 1,2·10 <sup>-2</sup>   | 2,9·10 <sup>-2</sup>   |
| K*                                  | $3,46\cdot10^{29}$   | $6,54\cdot 10^{26}$    | $3,14\cdot10^{24}$     | $3,16\cdot10^{22}$     |
| $p_{\mathit{Cl}_2}$ , Па            | $8,35\cdot10^{-60}$  | 2,33·10 <sup>-54</sup> | 1,01·10 <sup>-49</sup> | 9,98·10 <sup>-46</sup> |

Зависимости окислительно-восстановительных потенциалов самария  $(E_{\rm Sm}^{3+}/_{\rm Sm}^{2+})$  и европия  $(E_{\rm Eu}^{3+}/_{\rm Eu}^{2+})$  от логарифма отношения концентраций окисленной и восстановленной форм аппроксимируются прямыми линиями и описываются уравнением Нернста. Из предлогарифмических коэффициентов было рассчитано n электродной реакции (1). Их значения приведены в табл. 3.

Таблица 3 — Число электронов, принимающих участие в электрохимическом процессе восстановления SmCl<sub>3</sub> и EuCl<sub>3</sub> в расплавленных хлоридах

| Расплав  | $n \left( \mathrm{Sm}^{3+} + \bar{\mathrm{e}} \Leftrightarrow \mathrm{Sm}^{2+} \right)$ | $n (Eu^{3+} + \bar{e} \Leftrightarrow Eu^{2+})$ |
|----------|-----------------------------------------------------------------------------------------|-------------------------------------------------|
| LiCl     | $0,93 \pm 0,02$                                                                         | $0.98 \pm 0.02$                                 |
| NaCl-KCl | $0,90 \pm 0,01$                                                                         | $1,02 \pm 0,03$                                 |
| KC1      | $0.96 \pm 0.01$                                                                         | $0.95 \pm 0.01$                                 |
| CsCl     | $1,01 \pm 0,01$                                                                         | $1,02 \pm 0,03$                                 |

Из этих данных следует, что в изученных расплавах при электрохимическом восстановлении ионов  ${\rm Ln}^{3+}$  образуются ионы  ${\rm Ln}^{2+}$ . Установлено, что  ${\rm SmCl_2}$  и  ${\rm EuCl_2}$  не участвуют в реакции диспропорционирования во всем изученном диапазоне температур. Химический анализ застывших солевых плавов, содержащих дихлориды самария (европия), проведенный после опытов, подтверждает результаты измерений. Расхождения между кулонометрическим и аналитическим определениями не превышают 2,5 отн.%. Очевидно, что в исследуемых расплавах в пределах погрешности определений реакция электровосстановления протекает только по схеме (1).

Температурные зависимости условных стандартных окислительновосстановительных потенциалов самария  $(E^*_{\rm Sm}^{3+}_{\rm /Sm}^{2+})$  и европия  $(E^*_{\rm Eu}^{3+}_{\rm /Eu}^{2+})$  описываются эмпирическими уравнениями:

$$E_{Sm^{3+}/Sm^{2+}}^* = -(2,173\pm0,003) + (59,4\pm0,3)\cdot10^{-5}T \pm 0,001 \quad B \quad \text{LiCl}$$
 [923-1094 K] (26)

$$E_{Sm^{2+}/Sm^{2+}}^* = -(2,698 \pm 0,003) + (76,2 \pm 0,3) \cdot 10^{-5} T \pm 0,001 \quad B \quad (\text{Na-K})\text{Cl}_{3KB} \quad [973-1153 \text{ K}] \quad (27)$$

$$E_{Sm^{3+}/Sm^{2+}}^* = -(2,753\pm0,006) + (73,3\pm0,5)\cdot10^{-5}T\pm0,001 \quad B \quad \text{KCl}$$
 [1073-1223 K] (28)

$$E_{Sm^{3+}/Sm^{2+}}^* = -(2.943 \pm 0.003) + (79.8 \pm 0.3) \cdot 10^{-5} T \pm 0.001 \quad B \quad \text{CsCl}$$
 [973-1173 K] (29)

$$E_{Eu^{3+}/Eu^{2+}}^* = -(0.761\pm0.003) + (37.5\pm0.3)\cdot10^{-5}T\pm0.001 \quad B \quad \text{LiCl}$$
 [923-1094 K] (30)

$$E_{Eu^{3+}/Eu^{2+}}^{*} = -(1,418\pm0,001) + (62,9\pm0,1)\cdot10^{-5}T\pm0,001 \quad B \quad \text{(Na-K)Cl}_{3KB} \quad [973-1153 \text{ K}] \quad (31)$$

$$E_{Eu^{3+}/Eu^{2+}}^* = -(1,556 \pm 0,004) + (66,4 \pm 0,4) \cdot 10^{-5}T \pm 0,001 \quad B \quad \text{KCl}$$
 [1073-1223 K] (32)

$$E_{Eu^{3+}/Eu^{2+}}^* = -(1,764 \pm 0,003) + (73,0 \pm 0,3) \cdot 10^{-5} T \pm 0,001 \quad B \quad \text{CsCl}$$
 [973-1173 K] (33)

Замена соли-растворителя существенно сказывается на условных стандартных окислительно-восстановительных потенциалах самария и европия. Этот эффект связан с образованием комплексных ионов  $[LnCl_6]^{3-}$  и  $[LnCl_4]^{2-}$ , вследствие чего меняются коэффициенты активности потенциалопределяющих катионов среды.

Из измеренных значений  $E_{\text{Sm}}^{* \ 3+}/_{\text{Sm}}^{2+}$  и  $E_{\text{Eu}}^{* \ 3+}/_{\text{Eu}}^{2+}$  рассчитаны основные термодинамические параметры реакции (21), которые представлены в табл. 4 и 5.

Таблица 4 — Термодинамические свойства реакции  $SmCl_{2(\kappa)} + \frac{1}{2} Cl_{2(r.)} \Leftrightarrow SmCl_{3(\kappa)}$  в расплавленных хлоридах щелочных металлов при 1073 К

| Термодинамические<br>характеристики | LiCl                     | NaCl-KCl                 | KCl                      | CsCl                     |
|-------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| $E^*$ , B                           | - 1,536                  | - 1,880                  | - 1,996                  | - 2,087                  |
| $\Delta G^*$ , кДж/моль             | - 148,2                  | - 181,5                  | - 189,8                  | - 201,3                  |
| $\Delta H^*$ , кДж/моль             | - 209,7                  | - 260,3                  | - 265,6                  | - 284,0                  |
| $\Delta S^*$ , Дж/К·моль            | - 57,3                   | - 73,5                   | - 70,7                   | - 77,0                   |
| $\gamma_{SmCl_3}$                   | 1,0.10-1                 | $2,4\cdot10^{-3}$        | 9,4·10 <sup>-4</sup>     | 2,6·10 <sup>-4</sup>     |
| $K^*$                               | $1,63 \cdot 10^7$        | 6,81·10 <sup>8</sup>     | 1,73·10 <sup>9</sup>     | 6,41 · 109               |
| $p_{\mathit{Cl}_2}$ , Па            | 3,68 · 10 <sup>-15</sup> | 2,12 · 10 <sup>-18</sup> | 3,29 · 10 <sup>-19</sup> | 2,43 · 10 <sup>-20</sup> |

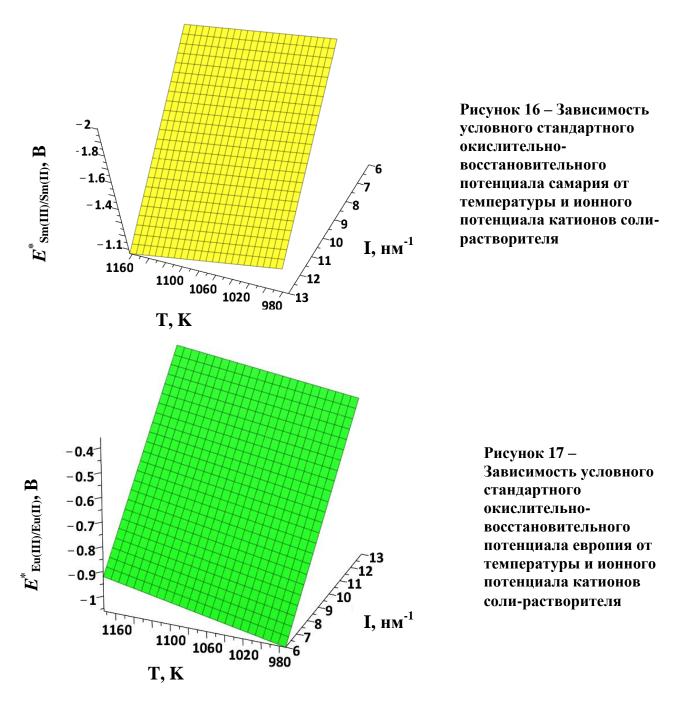
Зависимости  $E_{\text{Sm}/\text{Sm}}^{*}$  и  $E_{\text{Eu}/\text{Eu}}^{*}$  от ионного потенциала катионов солирастворителя и температуры описываются уравнениями (34) и (35). Они позволяют оценить значения  $E_{\text{Ln}/\text{Ln}}^{*}$  для тех солевых сред в ряду от LiCl до CsCl (или их смесей), в которых они не были определены экспериментально.

$$E_{Sm(III)/Sm(II)}^* = \left(\frac{-3 \cdot 10^{-5}}{r} + 10^{-3}\right)T + \frac{0,108}{r} - 3,601 \pm 0,006 \quad B$$
 (34)

$$E_{Eu(III)/Eu(II)}^* = \left(\frac{-5 \cdot 10^{-5}}{r} + 10^{-3}\right)T + \frac{0,139}{r} - 2,576 \pm 0,005 \quad B$$
 (35)

Таблица 5 — Термодинамические свойства реакции  $EuCl_{2(\kappa)} + \frac{1}{2} Cl_{2(r)} \Leftrightarrow EuCl_{3(\kappa)}$  в расплавленных хлоридах щелочных металлов при 1073 К

| Термодинамические<br>характеристики | LiCl                  | NaCl-KCl              | KCl                   | CsCl                   |
|-------------------------------------|-----------------------|-----------------------|-----------------------|------------------------|
| $E^*$ , B                           | - 0,359               | -0,742                | - 0,843               | -0,981                 |
| $\Delta G^*$ , кДж/моль             | - 34,6                | -71,6                 | - 81,4                | - 94,7                 |
| $\Delta H^*$ , кДж/моль             | - 73,4                | - 136,8               | - 150,1               | - 170,2                |
| $\Delta S^*$ , Дж/К·моль            | - 36,2                | - 60,7                | - 64,1                | - 70,4                 |
| $\gamma_{EuCl_3}$                   | 1,3·10 <sup>-1</sup>  | 2,1·10 <sup>-3</sup>  | 7,0.10-4              | 1,6·10 <sup>-4</sup>   |
| K*                                  | 48,30                 | 3,07·10 <sup>3</sup>  | 9,13·10 <sup>3</sup>  | 4,06·10                |
| $p_{Cl_2}$ , Па                     | 4,26·10 <sup>-4</sup> | 1,05·10 <sup>-7</sup> | 1,18·10 <sup>-8</sup> | 6,05·10 <sup>-10</sup> |


Изменение термодинамических параметров окислительно-восстановительной реакции с увеличением эффективного радиуса катионов соли-растворителя свидетельствует об упрочнении связи Ln—Cl в комплексных группировках  $[LnCl_6]^{3-}$  и  $[LnCl_4]^{2-}$  при переходе от хлорида лития к хлориду цезия. О том, какой из комплексов является более предпочтительным в различных солевых средах и при разных температурах можно судить по условным константам равновесия окислительно-восстановительной реакции (21).

Зависимость  $K^*$  от ионного потенциала катионов соли-растворителя и температуры описывается уравнениями (36) для самария и (37) для европия:

$$\ln K^* = \frac{\left(40911 - \frac{1137,2}{r}\right)}{T} - \frac{1,213}{r} - 3,947 \pm 0,03 \tag{36}$$

$$\ln K^* = \frac{\left(30072 - \frac{1618,7}{r}\right)}{T} + \frac{0,575}{r} - 12,072 \pm 0,02 \tag{37}$$

На рис. 16 и 17 представлены объемные матрицы  $E_{\rm Sm}^{*}{}_{/\rm Sm}^{2+}$  и  $E_{\rm Eu}^{*}{}_{/\rm Eu}^{2+}$  в зависимости от температуры и ионного потенциала катионов соли-растворителя.



Полученные данные свидетельствуют о том, что с понижением температуры и увеличением эффективного радиуса катионов соли-растворителя  $E_{\text{Sm}/\text{Sm}}^{* \ 3+} = 2+$  и

 $E_{\text{ Eu}}^{*}$   $^{3+}$   $^{2+}$  смещаются в сторону более электроотрицательных значений.

В целом, по результатам проведенных исследований можно сделать вывод о влиянии природы лантаноидов, входящих в состав цериевой подгруппы, на электрохимические и термодинамические свойства. Так, условные стандартные окислительно-восстановительные потенциалы элементов цериевой подгруппы линейно зависят от порядкового номера (z) в Периодической системе (рис. 18), при этом с возрастанием порядкового номера химического элемента значения  $E^*_{\text{Ln(III)/Ln(II)}}$  сдвигаются в электроположительную область.

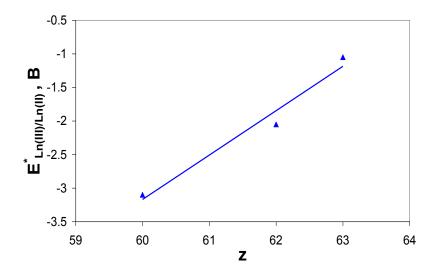
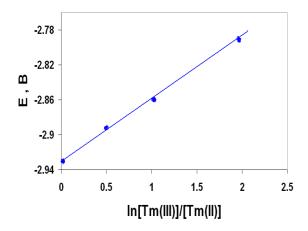
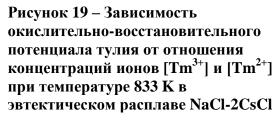





Рисунок 18-3ависимость условных стандартных окислительновосстановительных потенциалов лантаноидов цериевой подгруппы  $E^*_{\text{Ln(III)/Ln(II)}}$  от порядкового номера в расплавленном CsCl при температуре 943 K

**В пятой главе** исследованы свойства растворов соединений лантаноидов иттриевой подгруппы (Тт и Yb) в расплавленных хлоридах щелочных металлов потенциометрическим методом и рассчитаны основные термодинамические характеристики окислительно-восстановительной реакции (21).

Зависимости окислительно-восстановительных потенциалов тулия ( $E_{\rm Tm}^{3+}{}_{/{\rm Tm}}^{2+}$ ) и иттербия ( $E_{\rm Yb}^{3+}{}_{/{\rm Yb}}^{2+}$ ) от логарифма отношения концентраций их ионов разных степеней окисления приведены на рис. 19 и 20. Они аппроксимируются прямыми линиями и описываются уравнением Нернста. Из предлогарифмических коэффициентов было рассчитано n для процесса восстановления ионов  ${\rm Tm}^{3+}$  и  ${\rm Yb}^{3+}$  по реакции (1) в разных растворителях. Эти результаты сведены в табл. 6.





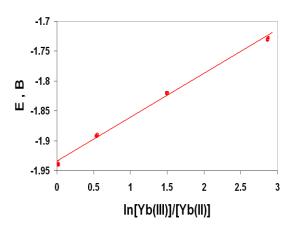



Рисунок 20 — Зависимость окислительновосстановительного потенциала иттербия от логарифма отношения концентраций ионов  $[Yb^{3+}]$  и  $[Yb^{2+}]$  при температуре 823 К в расплавленной эвтектике NaCl-2CsCl

Таблица 6 — Число электронов, принимающих участие в электрохимическом процессе восстановления ионов  $Tm^{3+}$  и  $Yb^{3+}$  в расплавленных хлоридах

| Расплав                       | $n (\mathrm{Tm}^{3+} + \bar{\mathrm{e}} \Leftrightarrow \mathrm{Tm}^{2+})$ | $n (Yb^{3+} + \bar{e} \Leftrightarrow Yb^{2+})$ |
|-------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|
| NaCl-KCl <sub>экв.</sub>      | $1,01 \pm 0,03$                                                            | -                                               |
| NaCl-KCl-CsCl <sub>эвт.</sub> | $0.99 \pm 0.01$                                                            | $0,99 \pm 0,01$                                 |
| NaCl-2CsCl <sub>эвт.</sub>    | $0.98 \pm 0.02$                                                            | $1,03 \pm 0,01$                                 |
| CsCl                          | $1,01 \pm 0,02$                                                            | $0.97 \pm 0.01$                                 |

Из приведенных данных следует, что в изученных расплавах при электрохимическом восстановлении ионов  $Ln^{3+}$  образуются только ионы  $Ln^{2+}$ .

Экспериментально определены температурные зависимости условных стандартных окислительно-восстановительных потенциалов тулия ( $E^*_{\mathrm{Tm}}^{3+}_{/\mathrm{Tm}}^{2+}$ ) и иттербия ( $E^*_{\mathrm{Yb}}^{3+}_{/\mathrm{Yb}}^{2+}$ ). Они описываются эмпирическими уравнениями:

$$E_{Tm^{3+}/Tm^{2+}}^{*} = -(3,523\pm0,004) + (102,0\pm0,3)\cdot10^{-5}T\pm0,006B \quad (Na-K)Cl_{9KB} \quad [973-1073 \text{ K}] \quad (38)$$

$$E_{Tm^{3+}/Tm^{2+}}^{*} = -(3,742\pm0,006) + (105,0\pm0,6)\cdot10^{-5}T\pm0,003B \text{ (Na-K-Cs)Cl}_{9BT} \text{ [823-973K]}$$
(39)

$$E_{Tm^{3+}/Tm^{2+}}^* = -(3.763 \pm 0.013) + (106.0 \pm 1.4) \cdot 10^{-5} T \pm 0.002 B \text{ (Na-Cs)Cl}_{9BT}$$
 [833-983K] (40)

$$E_{Tm^{3+}/Tm^{2+}}^{*} = -(4,030\pm0,030) + (124,0\pm2,7)\cdot10^{-5}T\pm0,005B \quad \text{CsCl}$$
 [973-1123 K] (41)

$$E_{Yb^{3+}/Yb^{2+}}^{*} = -(2,580 \pm 0,013) + (80,6 \pm 1,5) \cdot 10^{-5} T \pm 0,003 B \text{ (Na-K-Cs)Cl}_{3BT} \text{ [823-973K]}$$
 (42)

$$E_{Yb^{3+}/Yb^{2+}}^{*} = -(2,576 \pm 0,016) + (78,2 \pm 0,2) \cdot 10^{-5} T \pm 0,002 B \quad (\text{Na-Cs}) \text{Cl}_{3\text{BT}}$$
 [823-973K] (43)

$$E_{yb^{3+}/yb^{2+}}^{*} = -(2,464 \pm 0,008) + (65,0 \pm 0,7) \cdot 10^{-5} T \pm 0,001 B \text{ CsCl}$$
 [973-1123 K] (44)

В ряду от LiCl к CsCl эффективный радиус катиона соли-растворителя увеличивается, а поляризующая способность катионов щелочных металлов к анионам хлора уменьшается, что приводит к смещению условных стандартных окислительно-восстановительных потенциалов в сторону более электроотрицательных значений из-за упрочнения комплексных группировок  $[LnCl_6]^{3-}$  и  $[LnCl_4]^{2-}$ , т.е. взаимодействие катионов  $Li^+$  (с малым ионным радиусом) с анионами  $Cl^-$  в расплаве LiCl протекает гораздо сильнее, чем катионов  $Cs^+$  (с большим ионным радиусом) с анионами  $Cl^-$  в расплаве CsCl.

В табл. 7 и 8 представлены рассчитанные термодинамические характеристики окислительно-восстановительных реакций (21) для тулия и иттербия.

Таблица 7 — Термодинамические данные реакции  $TmCl_{2(\kappa)} + \frac{1}{2} Cl_{2(\Gamma)} \Leftrightarrow TmCl_{3(\kappa)}$  в расплавленных хлоридах щелочных металлов при 973 К

| Термодинамические<br>характеристики | NaCl-KCl               | NaCl-KCl-CsCl          | NaCl-2CsCl             | CsCl                   |
|-------------------------------------|------------------------|------------------------|------------------------|------------------------|
| $E^*$ , B                           | - 2,529                | -2,721                 | -2,733                 | -2,822                 |
| $\Delta G^*$ , кДж/моль             | -244,1                 | - 262,6                | - 263,6                | - 272,3                |
| $\Delta H^*$ , кДж/моль             | - 340,0                | - 362,6                | -364,2                 | - 388,8                |
| $\Delta S^*$ , Дж/К моль            | - 98,5                 | - 94,5                 | - 102,3                | - 119,7                |
| $K^*$                               | $7,76\cdot10^{14}$     | 1,31·10 <sup>14</sup>  | $1,44\cdot 10^{14}$    | $4,40\cdot10^{14}$     |
| $p_{\mathit{Cl}_2}$ , Па            | 6,11·10 <sup>-27</sup> | 5,86·10 <sup>-29</sup> | 3,50·10 <sup>-29</sup> | 5,61·10 <sup>-30</sup> |

Условные стандартные окислительно-восстановительные потенциалы иттербия при 973 К, рассчитанные из данных ЦВА и ЭДС, изменяются линейно в зависимости

от ионного потенциала катионов соли-растворителя в пределах погрешности экспериментальных измерений (рис. 21) и описываются уравнением:

$$E_{\text{Yb}/\text{Yb}}^{*3+}/\text{Yb}^{2+} = -(2,272 \pm 0,082) + (0,070 \pm 0,016)/\text{r}_{\text{M}}^{+} \pm 0,019 \text{ B}.$$
 (45)

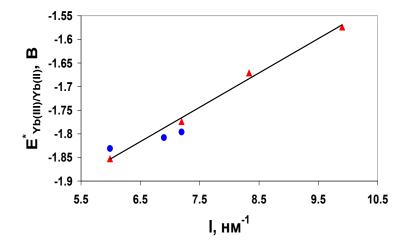



Рисунок 21 — Зависимость условных стандартных окислительно-восстановительных потенциалов иттербия от ионного потенциала катионов соли-растворителя при 973 К в расплавленных хлоридах щелочных металлов:

**▲** – данные, полученные методом ЦВА;

• – данные, полученные методом ЭДС

Таблица 8 — Термодинамические данные реакции  $YbCl_{2(\kappa)} + \frac{1}{2} Cl_{2(r.)} \Leftrightarrow YbCl_{3(\kappa)}$  в расплавленных хлоридах щелочных металлов при 973 К

| Термодинамические<br>характеристики | NaCl-KCl-CsCl          | NaCl-2CsCl             | CsCl                   |
|-------------------------------------|------------------------|------------------------|------------------------|
| $E^*$ , B                           | - 1,796                | - 1,815                | - 1,832                |
| $\Delta G^*$ , кДж/моль             | - 173,3                | - 175,1                | - 176 <b>,</b> 5       |
| $\Delta H^*$ , кДж/моль             | - 249,0                | - 248,6                | - 237,8                |
| $\Delta S^*$ , Дж/К моль            | − 77 <b>,</b> 8        | - 75,3                 | - 62,7                 |
| $\gamma_{YbCl_3}$                   | 1,6·10 <sup>-6</sup>   | 1,3·10 <sup>-6</sup>   | 1,1·10 <sup>-6</sup>   |
| K*                                  | $2,08\cdot10^{9}$      | 2,36·109               | $3,09\cdot10^{9}$      |
| $p_{Cl_2}$ , Па                     | 2,31·10 <sup>-19</sup> | 1,75·10 <sup>-19</sup> | 1,16·10 <sup>-19</sup> |

На рис. 22 и 23 представлены трехмерные диаграммы  $E^*_{\text{Tm}}^{3+}_{/\text{Tm}}^{2+}$  и  $E^*_{\text{Yb}}^{3+}_{/\text{Yb}}^{2+}$  в зависимости от ионного потенциала катионов соли-растворителя и температуры, которые описываются эмпирическими уравнениями (46) и (47):

$$E_{T_{m(III)/T_{m(II)}}}^{*} = \left(\frac{-1 \cdot 10^{-4}}{r} + 1.8 \cdot 10^{-3}\right) T + \frac{0.21}{r} - 5.270 \pm 0.006 \quad B$$
 (46)

$$E_{Yb(III)/Yb(II)}^* = \left(\frac{-4 \cdot 10^{-5} T + 0{,}106}{r}\right) + 8 \cdot 10^{-4} T - 3{,}019 \pm 0{,}005 \quad B \tag{47}$$

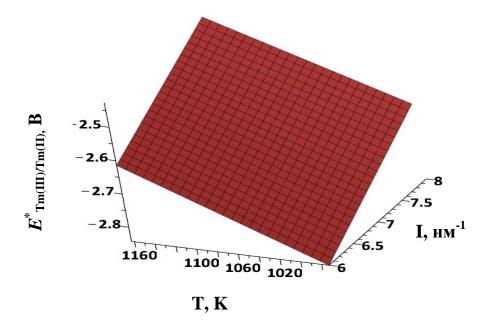



Рисунок 22 — Зависимость условных стандартных окислительновосстановительных потенциалов тулия от температуры и ионного потенциала катионов солирастворителя

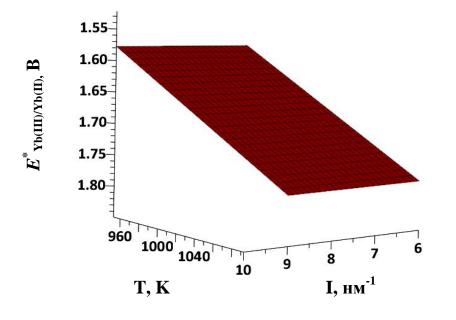



Рисунок 23 — Зависимость условных стандартных окислительновосстановительных потенциалов иттербия от температуры и ионного потенциала катионов солирастворителя

Используя уравнения поверхностей легко рассчитать значения  $E^*_{\mathrm{Tm}}^{3+}_{/\mathrm{Tm}}^{2+}$  и  $E^*_{\mathrm{Yb}}^{3+}_{/\mathrm{Yb}}^{2+}$  в неизученных хлоридных расплавах при различных температурах.

Зависимости  $K^*$  реакции (21) представлены в виде уравнений (48) для тулия и (49) для иттербия:

$$\ln K^* = \frac{\left(50419 + \frac{725,7}{r}\right)}{T} + \frac{0,989}{r} - 20,127 \pm 0,03 \tag{48}$$

$$\ln K^* = \frac{\left(16957 + \frac{1929.6}{r}\right)}{T} - \frac{2.314}{r} + 6.429 \pm 0.02 \tag{49}$$

**В шестой главе** предложена математическая интерпретация электрохимических и термодинамических свойств растворов соединений лантаноидов в хлоридных расплавах с использованием универсального пакета программ Maple 17.

При составлении и описании модели, заложенной в программное обеспечение Maple 17, основной задачей являлась интерполяция выбранной функции с известными значениями в диапазоне изменения параметров. Эти значения, как правило, находятся в результате эксперимента или в результате вычислений.

Обобщены изученные электрохимические и термодинамические свойства растворов соединений самария, европия, тулия и иттербия в хлоридных расплавах разного катионного состава в широком интервале температур. Полученные результаты приведены в виде уравнений (10, 34-37, 46-49) и рисунков (10, 16, 17, 22-24). Уравнения поверхностей позволяют оценить значения D,  $E_{\text{Ln}}^{*}$  и  $E_{\text{Ln}}^{*}$  и  $E_{\text{Ln}}^{*}$  для тех солевых сред в ряду LiCl-NaCl-KCl-RbCl-CsCl (или их смесей), в которых они не были определены экспериментально.

Интересно проследить влияние природы лантаноидов на изменение основных термодинамических характеристик окислительно-восстановительной реакции (21) с целью установления общих закономерностей. В табл. 9 представлены термодинамические данные реакции  $LnCl_{2(\kappa)} + \frac{1}{2} Cl_{2(r)} \Leftrightarrow LnCl_{3(\kappa)}$  в расплаве CsCl.

На рис. 24 показаны построенные зависимости условных констант равновесия окислительно-восстановительной реакции (21) для элементов цериевой (Sm, Eu) и иттриевой (Tm, Yb) подгрупп от обратной температуры и порядкового номера лантаноида в Периодической системе химических элементов.

Конфигурация валентных электронов лантаноидов может быть выражена общей

формулой 4f<sup>2-14</sup>5d<sup>0-1</sup>6s<sup>2</sup>. По правилу Хунда у элементов цериевой подгруппы 4f-орбитали заполняются сначала по одному электрону каждая, а у элементов иттриевой подгруппы к ним добавляется по второму электрону. Периодический характер заполнения 4f-орбиталей электронами предопределяет внутреннюю периодичность свойств лантаноидов, которая следует из экспериментальных данных, представленных на рис. 24 и в табл. 9. Можно предполагать, что весьма вероятно подобная внутренняя периодичность будет наблюдаться и для актинидов.

Таблица 9 — Термодинамические параметры реакции  $LnCl_{2(ж.)} + \frac{1}{2} Cl_{2(r.)} \Leftrightarrow LnCl_{3(ж.)}$  (Ln = Sm, Eu, Tm, Yb) в расплаве CsCl при 973 K

| Термодинамические        | Цериевая подгруппа    |                        | Иттриевая подгруппа    |                        |
|--------------------------|-----------------------|------------------------|------------------------|------------------------|
| характеристики           | Sm Eu                 |                        | Tm                     | Yb                     |
| $E^*$ , B                | - 2,167               | -1,054                 | -2,822                 | - 1,846                |
| $\Delta G^*$ , кДж/моль  | - 209,1               | - 101,7                | - 272,3                | - 178,2                |
| $\Delta H^*$ , кДж/моль  | - 284,0               | - 170,2                | - 388,8                | - 258,7                |
| $\Delta S^*$ , Дж/К моль | -77,0                 | - 64,1                 | - 119,7                | - 82,8                 |
| $\gamma_{LnCl_3}$        | 6,2·10 <sup>-5</sup>  | 5,4·10 <sup>-5</sup>   | _                      | 1,1·10 <sup>-6</sup>   |
| $K^*$                    | 1,69·10 <sup>11</sup> | $2,89 \cdot 10^5$      | $4,40\cdot10^{14}$     | 3,80·10 <sup>9</sup>   |
| $p_{\mathit{Cl}_2}$ , Па | $3,49\cdot10^{-23}$   | 1,19·10 <sup>-11</sup> | 7,05·10 <sup>-30</sup> | 6,92·10 <sup>-20</sup> |

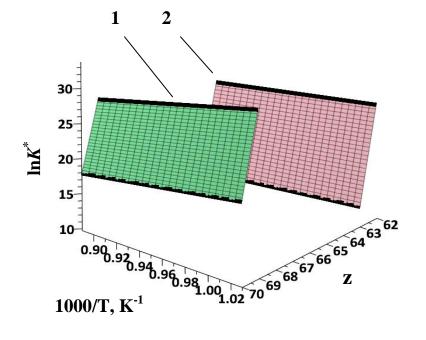



Рисунок 24-3ависимость условных констант равновесия окислительновосстановительной реакции  $LnCl_{2(\kappa.)}+\frac{1}{2}Cl_{2(r.)}\Leftrightarrow LnCl_{3(\kappa.)}$  (Ln=Sm,Eu,Tm,Yb) от обратной температуры и порядкового номера элемента в расплавленном CsCl.  $1-Sm,Eu;\ 2-Tm,Yb$ 

Анализ результатов выполненных исследований показывает, что устойчивость растворов дихлоридов лантаноидов в хлоридных расплавах снижается в ряду для цериевой подгруппы  $EuCl_2 > SmCl_2 > NdCl_2$  и  $YbCl_2 > TmCl_2$  для иттриевой подгруппы, а растворов трихлоридов лантаноидов – в ряду  $NdCl_3 > SmCl_3 > EuCl_3$  и  $TmCl_3 > YbCl_3$ , соответственно.

## **ВЫВОДЫ**

- 1. Выполнено комплексное исследование растворов соединений лантаноидов цериевой и иттриевой подгрупп в расплавленных хлоридах щелочных металлов и их смесях, позволившее получить новые систематические сведения о закономерностях изменения их электрохимических и термодинамических свойств в зависимости от химического состава солевой среды и температуры. Полученные результаты составляют научную основу перспективных пироэлектрохимических способов регенерации отработавшего ядерного топлива и переработки техногенного редкоземельного сырья.
- 2. Впервые исследованы реакции электрохимического восстановления ионов  $Nd^{3+}$ ,  $Tm^{3+}$  и  $Yb^{3+}$  до металла на инертных и сплавообразующих электродах в расплавленных хлоридах щелочных металлов разного катионного состава в широком интервале температур. На основе стандартных диагностических критериев и теории циклической вольтамперометрии установлен механизм катодной реакции на инертных электродах, протекающей в две стадии: первая стадия связана с образованием растворимых двухзарядных ионов  $Ln^{2+}$ , а вторая с выделением металлического Nd и Tm. Электроосаждение металлического Yb возможно только на активных электродах вследствие снижения его активности в сплаве. Это позволяет получать иттербий в виде интерметаллических соединений разного состава  $Al_x Yb_y$  электролизом расплавленных солей.
- 3. Изучена устойчивость растворов  $LnCl_2$  (Ln = Nd, Sm, Eu, Tm, Yb), входящих в состав комплексов  $[LnCl_4]^{2-}$  в хлоридных расплавах. Их стабильность

- снижается в ряду  $EuCl_2 > YbCl_2 > SmCl_2 > TmCl_2 > NdCl_2$ . Установлено, что  $NdCl_2$  при высоких температурах (> 798 K) диспропорционирует на Nd и  $NdCl_3$  в отличие от других дихлоридов.
- 4. Впервые рассчитаны зависимости коэффициентов диффузии ионов [YbCl<sub>6</sub>]<sup>3</sup> от ионного потенциала катионов соли-растворителя и температуры. Возрастание коэффициентов диффузии с увеличением поляризующей силы катионов соли-растворителя и температуры связано с повышением доли перескокового механизма в общем процессе диффузии.
- 5. Впервые стационарными и нестационарными электрохимическими методами получены систематизированные и согласующиеся между собой данные по зависимостям условных стандартных окислительно-восстановительных потенциалов Ln(III)/Ln(II) (Ln = Nd, Sm, Eu, Tm, Yb) от ионного потенциала катионов соли-растворителя, температуры и положения элемента в Периодической системе. Устойчивость растворов трихлоридов лантаноидов в солевых расплавах снижается в ряду NdCl<sub>3</sub> > TmCl<sub>3</sub> > SmCl<sub>3</sub> > YbCl<sub>3</sub> > EuCl<sub>3</sub>. Интерпретация результатов проведена с позиции теории комплексообразования.
- 6. Впервые установлена внутренняя периодичность изменения электрохимических и термодинамических свойств растворов соединений лантаноидов в расплавленных хлоридах щелочных металлов, которая предопределена характером заполнения 4f-орбиталей электронами.

# Основное содержание диссертации изложено в следующих публикациях: Статьи:

- 1. **Новоселова А.В.**, Шишкин В.Ю., Хохлов В.А. Окислительно-восстановительные потенциалы  $\text{Sm}^{3+}/\text{Sm}^{2+}$  и  $\text{Eu}^{3+}/\text{Eu}^{2+}$  в расплавленной эквимольной смеси хлоридов натрия и калия // Расплавы. − 1999. − № 6. − С. 34-41.
- 2. **Новоселова А.В.**, Шишкин В.Ю., Хохлов В.А. Окислительновосстановительные потенциалы  $\text{Sm}^{3+}/\text{Sm}^{2+}$  и  $\text{Eu}^{3+}/\text{Eu}^{2+}$  в расплавленных хлоридах калия и цезия // Расплавы. − 2000. − № 6. − С. 16-21.
- 3. **Новоселова А.В.**, Хохлов В.А., Шишкин В.Ю. Окислительновосстановительные потенциалы самария и европия в расплавленном хлориде цезия // Журнал прикл. химии. -2001. Т. 74. № 10. С. 1622-1627.

- 4. **Novoselova A.**, Shishkin V., Khokhlov V. Redox Potentials of Samarium and Europium in Molten Lithium Chloride // Z. Naturforsch. 2001. V. 56 a. No. 11. P. 754-756.
- 5. **Novoselova A.**, Khokhlov V., Shishkin V. Thermodynamic Characteristics of Samarium and Europium Chlorides in Molten Alkali Chlorides // Z. Naturforsch. 2001. V. 56 a. No. 12. P. 837-840.
- 6. **Novoselova A.V.**, Khokhlov V.A., Shishkin V.Yu. The Thermodynamic Properties of Chloride Melts Containing Differently Charged Samarium and Europium Ions // Russ. J. Phys. Chem. 2003. Vol. 77. Suppl. 1. P. S119-S124.
- 7. Хохлов В.А., **Новоселова А.В.**, Николаева Е.В., Ткачева О.Ю., Салюлев А.Б. Окислительно-восстановительные реакции в расплавленных электролитах, содержащих хлориды редкоземельных металлов // Электрохимия. -2007. T.43. -№ 8. C. 1010-1016.
- 8. Смоленский В.В., **Новоселова А.В.**, Бове А.Л. Электрохимические свойства иттербия в расплаве хлорида цезия // Расплавы. -2007. № 6. С. 66-72.
- 9. Смоленский В.В., **Новоселова А.В.**, Бове А.Л. Электрохимическое поведение иттербия в эквимольном расплаве хлоридов натрия и калия // Журнал прикл. химии. -2007. T. 80. N 10. C. 1632-1637.
- 10.Смоленский В.В., **Новоселова А.В.**, Осипенко А.Г. Электрохимическое исследование окислительно-восстановительной реакции Yb(III) + e = Yb(II) в расплавленной эвтектике LiCl-KCl // Журнал прикл. химии. 2008. Т. 81. вып. 10. С. 1643-1648.
- 11. Смоленский В.В., **Новоселова А.В.** Расчет основных параметров реакции восстановления ионов Yb(III) в расплаве CsCl методами GPES − CONVOLUTION и GPES − FIT & SIMULATION // Расплавы. -2008. -№ 6. C. 53-58.
- 12. Smolenski V., **Novoselova A.**, Osipenko A., Caravaca C., Cordoba G. Electrochemistry of ytterbium (III) in molten alkali metal chlorides // Electrochim. Acta. 2008. Vol. 54. P. 382-387.
- 13. Smolenski V., **Novoselova A.**, Bovet A., Osipenko A., Kormilitsyn M. Electrochemical and thermodynamic properties of ytterbium trichloride in molten caesium chloride // J. Nucl. Mater. 2009. Vol. 385. P. 184-185.
- 14.**Новоселова А.В.**, Смоленский В.В., Шарапов Ю.В. Измерение окислительновосстановительных потенциалов Yb(III)/Yb(II) в расплавленной эвтектике NaCl-2CsCl // Электронный научный журнал «Современные проблемы науки и образования». 2009. № 3. С. 77-78. <a href="http://www.science-education.ru/">http://www.science-education.ru/</a>
- 15. Smolenski V., **Novoselova A.**, Osipenko A., Kormilitsyn M. The influence of electrode material nature on the mechanism of cathodic reduction of ytterbium (III) ions in fused NaCl-KCl-CsCl eutectic // J. Electroanal. Chem. 2009. Vol. 633. P. 291-296.
- 16.**Новоселова А.В.**, Смоленский В.В. Об окислительно-восстановительной реакции  $Yb(III) + \bar{e} = Yb(II)$  в расплавленной эвтектической смеси NaCl-2CsCl // Журнал прикл. химии. 2009. Т. 82. вып. 12. С. 1991-1996.

- 17.**Новоселова А.В.**, Смоленский В.В. Окислительно-восстановительные потенциалы Yb(III)/Yb(II) в расплавленном хлориде цезия // Расплавы. -2009. № 6. С. 49-56.
- 18. **Novoselova A.**, Smolenski V. Thermodynamic properties of thulium and ytterbium in molten caesium chloride // J. Chem. Thermodyn. 2010. Vol. 42. P. 973-977.
- 19.**Новоселова А.В.**, Смоленский В.В. Электрохимические и термодинамические свойства трихлорида тулия в расплавленной эвтектике NaCl-KCl-CsCl // Журнал прикл. химии. 2010. Т. 83. вып. 11. С. 1812-1815.
- 20. **Novoselova A.**, Smolenski V. Thermodynamic properties of thulium and ytterbium in fused NaCl-KCl-CsCl eutectic // J. Chem. Thermodyn. 2011. Vol. 43. P. 1063-1067.
- 21. Smolenski V., **Novoselova A.** Electrochemistry of redox potential of the couple  $Tm^{3+}/Tm^{2+}$  and the formation of a Tm-Al alloy in fused NaCl-2CsCl eutectic // Electrochim. Acta. 2012. Vol. 63. P. 179-184.
- 22. **Novoselova A.**, Smolenski V. The influence of solvent nature on thermodynamic properties of the reaction  $Tm(III) + \bar{e} = Tm(II)$  in molten chlorides // J. Chem. Thermodyn. 2012. Vol. 48. P. 140-144.
- 23.**Новоселова А.В.**, Смоленский В.В. Электрохимическое исследование реакции восстановления ионов Tm(III) в расплавленной эвтектике NaCl-2CsCl // Журнал прикл. химии. 2012. Т. 85. вып. 2. С. 229-235.
- 24. **Novoselova A.**, Smolenski V. Electrochemical behavior of neodymium compounds in molten chlorides // Electrochim. Acta. 2013. Vol. 87. P. 657-662.
- 25.**Новоселова А.В.**, Смоленский В.В. Электрохимические и термодинамические свойства лантанидов (Nd, Sm, Eu, Tm, Yb) в расплавленных хлоридах щелочных металлов // Радиохимия. -2013. T. 55. № 3. C. 193-204.
- 26.**Новоселова А.В.**, Смоленский В.В. Электрохимическое исследование свойств ионов Nd(III) и Nd(II) в расплавленной эвтектике LiCl-KCl-CsCl и индивидуальном CsCl // Электрохимия. -2013. -T. 49. -№ 10. -C. 1041-1047.

# Глава в коллективной монографии:

1. **Novoselova A.**, Smolenski V., Osipenko A., Kormilitsyn M. Electrochemistry of Tm(III) and Yb(III) in Molten Salts // Chapter in book: «Mass Transfer – Advanced Aspects» / Ed. H. Nakajima. – Croatia, Rijeka: InTech, 2011. – P. 263-284. ISBN 978-953-307-636-2. <a href="http://www.intechopen.com/books/mass-transfer-advanced-aspects/">http://www.intechopen.com/books/mass-transfer-advanced-aspects/</a>

Автор выражает искреннюю благодарность д.х.н., проф. В.А. Хохлову за постоянную поддержку проводимых исследований и полезные дискуссии; д.х.н. В.В. Смоленскому за методическую помощь, плодотворное обсуждение результатов и поддержку; к.х.н. В.Ю. Шишкину за методическую помощь; к.х.н. Н.И. Шурову за ценные замечания и рекомендации; А.Г. Осипенко за предоставленные реактивы: безводные NdCl<sub>3</sub> и LiCl; Я.М. Лукьяновой за помощь в математическом моделировании.