На правах рукописи

Кахтан Абдалькадер Мукбель Фархан

Электрохимический синтез функциональных материалов на основе диспрозия в галогенидных расплавах

Специальность 02.00.05 – Электрохимия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2015

Работа выполнена на кафедре неорганической и физической химии и в центре коллективного пользования «Рентгеновская диагностика материалов» ФГБОУ ВПО «Кабардино-Балкарский государственный университет» им. Х.М. Бербекова

Научный руководитель:	Кушхов Хасби Билялович, доктор химических наук, профессор				
Официальные оппоненты:	Новоселова Алена Владимировна, доктор химических наук, доцент, ФГБУН Институт высокотемпературной электрохимии Уральского отделения РАН, ведущий научный сотрудник ла- боратории расплавленных солей				
	Половов Илья Борисович, кандидат химических наук, Физико-технологический институт ФГБОУ ВПО «Уральский федеральный университет им. первого Президента России Б.Н.Ельцина», доцент кафедры редких металлов и наноматериалов				
Велушая организация:	ФГБОУ ВПО «Вятский госуларствен-				

едущая организаци

удар ный университет», г.Киров

Защита состоится 15 апреля 2015 г. в 15.30. на заседании диссертационного совета Д 004.002.01 при Институте высокотемпературной электрохимии УрО РАН по адресу: г. Екатеринбург, ул. Академическая, 20, конференц-зал.

Ваши отзывы в двух экземплярах, подписанные и заверенные гербовой печатью, просим высылать по адресу: 620137, г. Екатеринбург ул. Академическая, 20, Институт высокотемпературной электрохимии УрО РАН, ученому секретарю диссертационного совета Кулик Нине Павловне.

E-mail: N.P.Kulik@ihte.uran.ru. Факс +7 (343) 3745992.

С диссертацией можно ознакомиться в научной библиотеке УрО РАН, г. Екатеринбург, ул. Софьи Ковалевской, 20 и на сайте института по адресу http://www.ihte.uran.ru/?page_id=4830.

Автореферат разослан _____ 2015 г.

Ученый секретарь диссертационного совета кандидат химических наук

Увену Кулик Н.П.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Область применения диспрозия и соединений на его основе довольно обширна. Как известно, он служит отличным легирующим компонентом цинковых сплавов, а добавление диспрозия к цирконию резко улучшает его технологичность. Ионы диспрозия давно применяются в медицинских лазерах в качестве эффективного катализатора, его соединения используются в термоэлектрических материалах и электронике. Бориды, борат, оксид и гафнат диспрозия применяются в атомной технике как активно захватывающий нейтроны материал (покрытия, регулирующие стержни). Кроме того, сплавы и соединения диспрозия (силициды) используются в производстве люминесцирующих материалов и специальной керамики, атомной промышленности. Сплав Dy–Fe в поликристаллическом и монокристаллическом виде обладает гигантским магнитострикционным эффектом; оксид диспрозия применяется в производстве сверхмощных магнитов и как компонент люминофоров красного свечения.

В связи с этим является актуальным разработка эффективных методов получения диспрозия, сплавов и соединений на его основе. Перспективным способом получения металлического диспрозия и соединений на его основе является электролиз расплавленных солей. Для эффективного использования электролитического метода получения металлического диспрозия, сплавов и соединений на его основе необходимо располагать надежной информацией об электрохимическом поведении комплексов, образуемых ионами диспрозия в расплавленных солях, и процессах совместного электровосстановления с компонентами синтезируемых соединений.

На момент постановки задачи готовых рекомендаций по электрохимическому синтезу боридов и силицидов диспрозия в литературе не существовало.

Цель нашей работы - выявление закономерностей электрохимического восстановления ионов диспрозия в хлоридных и хлоридно-фторидных расплавах на различных электродных материалах и разработка метода электрохимического синтеза боридов и силицидов диспрозия.

В связи с этим были сформулированы следующие основные задачи:

- изучение электрохимического поведения ионов диспрозия в хлоридных расплавах при 973 и 823 К на различных электродных материалах (вольфрам, серебро, алюминий, стеклоуглерод);

- установление влияния анионного состава электролита на электрохимическое поведение ионов диспрозия;

- установление закономерностей протекания совместного электровосстановления ионов диспрозия, фторборат и фторсиликат-ионов в галогенидных расплавах;

- разработка метода высокотемпературного электрохимического синтеза боридов и силицидов диспрозия в хлоридно-фторидных расплавах.

Научная новизна Получены систематические данные по механизму электровосстановления комплексов диспрозия в хлоридных расплавах. Изучено влияние анионного состава (фторид-иона) на механизм катодного восстановления. Установлены особенности и закономерности электровосстановления комплексов диспрозия на различных электродных материалах. Большая часть экспериментальных данных оригинальна и получена впервые. Осуществлены процессы совместного электровосстановления ионов диспрозия, бора и кремния в хлориднофторидных расплавах. Впервые разработаны процессы электрохимического синтеза ультрадисперсных порошков боридов и силицидов диспрозия. Установлены влияния различных факторов на процесс электросинтеза боридных и силицидных фаз диспрозия – состава электролизной ванны, напряжении на ванне, продолжительность электролиза и температуры. Определены оптимальные параметры получения ультрадисперсных порошков боридов и силицидов диспрозия.

Практическая ценность работы. Результаты исследований могут быть взяты за основу при разработке технологии электрохимического получения диспрозия и высокотемпературного электрохимического синтеза боридов и силицидов диспрозия в галогенидных расплавах.

На защиту выносятся:

1. Результаты исследований процессов электровосстановления ионов диспрозия на различных электродах в хлоридных расплавах.

2. Результаты исследований влияния анионнового состава электролита на механизм электровосстановления ионов диспрозия.

3. Результаты исследований процесса совместного электровосстановления ионов диспрозия с фторборат и фторсиликат – ионов в галогенидных расплавах.

4. Результаты исследований по определению условий высокотемпературного электрохимического синтеза двухкомпонентных соединений на основе диспрозия, бора и кремния.

Личный вклад соискателя состоит в анализе литературных данных, проведении экспериментов и обработке полученных результатов. Определение темы и задач диссертационной работы, анализ, обсуждение и обобщение результатов выполнены автором совместно с научным руководителем, д. х. н., профессором Х. Б. Кушховым.

Фазовый и гранулометрический состав ультрадисперсных порошков боридов и силицидов диспрозия исследовали на обородудовании ЦКП «Рентгеновская диагностика материалов» ФГБОУ ВПО КБГУ.

Апробация работы. Результаты работы были представлены на XVI Российской конференции по физической химии и электрохимии расплавленных и твердых электролитов (Екатеринбург, 2013 г.); на международной научной конференции студентов, аспирантов и молодых учёных «Перспектива – 2013» (Нальчик, 2013 г.); на международной научно-практической конференции «Актуальные вопросы образования и науки» (Тамбов, 2013 г.).

Публикации. По результатам работы опубликованы 7 статей и 2 тезиса в зарубежных и отечественных изданиях, получен 1 патент на изобретение.

Объем и структура работы. Диссертация состоит из введения, четырех глав, выводов, списка цитируемой литературы. Работа изложена на 139 страницах машинописного текста, включая 11 таблиц, 67 рисунков и библиографию из 193 наименований.

Во введении представлены обоснование актуальности выбранной темы, цель, а также элементы новизны и практическая ценность диссертационной работы.

В первой главе приведен аналитический обзор по теме диссертации. Собраны и проанализированы данные по строению, структуре, физико-химическим и электрохимическим свойствам хлоридных, хлоридно-фторидных, фторидных, фторидно-оксидных расплавов содержащих ионы диспрозия, бора и кремния. Отмечается, что в литературе имеется весьма ограниченная информация по электрохимическому получению металлического диспрозия и сплавов на его основе.

Bo второй главе обоснован выбор электрохимических и физикохимических методов исследования, приведены методики проведения экспериментов и подготовки реактивов, дано описание конструкций электрохимической ячейки и электродов. Для решения поставленных задач использовались методы: циклическая вольтамперометрия при стационарных и нестационарных условиях поляризации, потенциостатический электролиз, рентгенофазовый метод анализа продуктов электролиза, сканирующая электронная микроскопия и лазерный анализ размера наночастиц. В качестве растворителей были использованы расплавы: эквимольная смесь KCl-NaCl и эвтектический расплав KCl-NaCl-CsCl; исходные соли для электролитов предварительно перекристаллизовывались и затем сплавлялись в атмосфере очищенного и осушенного аргона. Обезвоживание DyCl₃·6H₂O до чистого безводного хлорида проводилось в присутствии избытка NH₄Cl по известной методике. Тетрафторборат калия KBF₄ и гексафторсиликат K₂SiF₆ перекристализовывали в HF с последующей отмывкой в спирте. Все операции с безводным хлоридом диспрозия осуществляли в перчаточном боксе mBraun LabStar 50 в атмосфере аргона.

Вольтамперные исследования велись с помощью электрохимического комплекса AUTOLAB PGSTAT 30. В работе также использовались рентгенофазовый анализ на дифрактометре ДРОН-6, Сканирующая электронная микроскопия (Vega3 LMHTESCAN)–Х-Мах N и лазерный анализатор размера наночастиц (Analysette 22 Nanotech Plus).

В качестве рабочего электрода были использованы полупогруженные игольчатые вольфрамовые, серебряные, алюминиевые и стеклоуглеродные электроды. Электродом сравнения служил стеклоуглеродный квазиобратимый электрод и хлорсеребряный электрод. Стеклоуглеродный тигель использовался нами в качестве анода и одновременно контейнера для расплава. Полученный экспериментальный материал изложен в двух последующих главах, основное содержание которых приводится ниже.

Электровосстановление ионов диспрозия на фоне эквимольного KCl– NaCl при 973 K и эвтектического KCl–NaCl–CsCl при 823 K расплавов на различных электродах

1. Электровосстановление ионов диспрозия на вольфрамовом электроде

При содержании DyCl₃ в расплаве KCl–NaCl порядка 1,0·10⁻⁴ моль·см⁻³ на вольт-амперных кривых появляется волна электровосстановления ионов диспрозия при потенциалах –(2,25-2,35) В и –(2,05-2,15) В относительно стеклоуглеродного и хлорсеребряного электродов (рис. 1 а и б) соответственно. Сравнение вольтамперных кривых показывает, что волна восстановления ионов диспрозия отно-

сительно хлорсеребряного электрода находится в более положительной области потенциалов (~200 мВ), чем относительно стеклоуглеродного электрода. Увеличение концентрации деполяризатора приводит к росту волны восстановления, а скорости поляризации к росту высоты и смещению в область более отрицательных потенциалов.

На фоне расплава KCl–NaCl–CsCl волна электровосстановления ионов диспрозия наблюдается при потенциалах –(2,6-2,9) В относительно стеклоуглеродного электрода. С повышением концентрации трихлорида диспрозия в расплаве KCl– NaCl–CsCl высота волны восстановления растет (рис. 2, а). Увеличение скорости поляризации приводит к смещению волны в область более отрицательных потенциалов и к росту высоты волны (рис. 2, б).

2. Электровосстановление ионов диспрозия на серебряном электроде На серебряном электроде в расплаве KCl–NaCl наблюдается волна при по-

тенциалах –(1,8-1,9) В относительно хлорсеребряного электрода, а в расплаве КСІ–NaCl–CsCl – при потенциалах –(2,4-2,6) В относительно стеклоуглеродного электрода (рис. 3 а и б) соответственно.

Рис. 3. Цикловольтамперограммы расплава KCl–NaCl–DyCl₃ и KCl– NaCl–CsCl–DyCl₃. C(DyCl₃)·10⁴, моль·см⁻³: a) 1 - 0; 2 - 2,4; 3 - 4,3; 4 - 5,7; б) 1 - 0; 2 - 2,0; 3 - 3,9; 4 - 4,7; V, B/c; a) 0,07; б) 0,01; T = 973 и 823 K; катод – Ag; Электрод сравнения: a) Ag/AgCl, б) CУ; S_{Ag}, см²: a) 0,29; б) 0,19

Восстановление ионов диспрозия на серебряном электроде, в сравнении с процессами на вольфраме, происходит в области более положительных потенциалов (~250-300 мВ) как в расплаве KCl–NaCl, так и в расплаве KCl–NaCl–CsCl. Смещение волны восстановления ионов диспрозия на серебряном электроде мы связываем с взаимодействием выделившегося диспрозия с серебром и образованием сплавов и интерметаллических соединений.

3. Электровосстановление ионов диспрозия на алюминиевом электроде при 823 К

При электровосстановлении ионов диспрозия в эвтектическом расплаве KCl–NaCl–CsCl на алюминиевом электроде наблюдаются две волны. Первая при потенциалах –(1,8-2,0) В – волна восстановления ионов алюминия, перешедших в расплав в результате коррозии; вторая волна – при потенциалах –(2,4-2,6) В, что соответствует на наш взгляд образованию сплава алюминия с выделяющимся диспрозием. Увеличение концентрации деполяризатора приводит к росту волны восстановления ионов диспрозия (рис. 4).

Рис. 4. Цикловольтамперограммы расплава KCl–NaCl–CsCl при 823 K на Al (S_{Al} = 0,23 cm²) при C(DyCl₃)·10⁴, моль·см⁻³: I -KCl–NaCl–CsCl; 2 - 3,0; 3 - 7,8; 4 - 8,8. V = 0,07 B/c. Электрод сравнения – стеклоуглерод

4. Электровосстановление ионов диспрозия на стеклоуглеродном электроде

Электровосстановление ионов диспрозия на стеклоуглеродном электроде в расплавах KCl–NaCl при 973 и KCl–NaCl–CsCl при 823 K (рис. 5 а и б) происходит в той же области потенциалов, что и на вольфрамовом электроде. Однако здесь волны более растянуты по оси потенциалов, чем на вольфрамовом электроде. Следует отметить и существенную разницу между потенциалами пиков катодного и анодного процессов и площадей под анодной и катодной кривой. Накопительный электролиз при потенциале волны восстановления ионов диспрозия в расплаве KCl–NaCl на стеклоуглеродном электроде и последующее выщелачивание продуктов электролиза приводит к газовыделению и образованию углеводородов (преимущественно ацетилена), что подтверждает образование карбида диспрозия.

В расплаве KCl–NaCl–CsCl волны восстановления ионов диспрозия на стеклоуглеродном катоде находятся в более отрицательной области потенциалов (рис. 5 б). Электролиз при потенциалах волны восстановления ионов диспрозия и последующее выщелачивание не приводит к образованию углеводородов, что свидетельствует об отсутствии взаимодействия диспрозия с материалом катода.

Рис. 5. Цикловольтамперограммы расплава KCl–NaCl– DyCl₃ и KCl–NaCl–CsCl–DyCl₃. C(DyCl₃)·10⁴, моль/см³: a) 1 - 0; 2 - 2,0; 3 - 3,5; 4 - 5,0; 5 - 6,0; б) 1 - 0; 2 - 4,0; 3 - 8,0; 4 - 10,0; 5 - 11,7; V, B·c⁻¹; a) 0,02 ; б) 0,1; T = 973 и 823 К соответственно; катод – СУ; электрод сравнения: a) Ag/AgCl, б) СУ; S_{су}, см²; a) 0,39; б) 0,13

Механизм процесса электровосстановления ионов диспрозия в хлоридных расплавах

Для установления характера и механизма электродного процесса электровосстановления ионов диспрозия в хлоридном расплаве был проведен расчет плотности тока пика i_p , потенциалов пика E_p и полупика $E_{p/2}$, полуширины пика ΔE и числа электронов *n*, переносимых в электродном процессе при различных концентрациях DyCl₃ и скоростях поляризации по общеизвестным диагностическим критериям (табл. 1 и 2).

Предельный ток электровосстановления ионов диспрозия в эквимольном расплаве KCl–NaCl (973 K) и эвтектическом расплаве KCl–NaCl–CsCl (823 K) на вольфрамовом и серебряном электродах прямо пропорционально растет с увеличением концентрации трихлорида диспрозия в расплаве при различных скоростях поляризации (рис. 6 и 7). Эти данные свидетельствуют о диффузионном контроле процесса электровосстановления в расплаве NaCl–KCl и KCl–NaCl–CsCl при ста-

ционарных условиях поляризации. На диффузионный контроль электродного процесса также указывает значение соотношения $i_d/nFC = (1,0-3,0)\cdot10^{-3} \text{ см}\cdot\text{c}^{-1}$ в расплаве NaCl–KCl, и (0,2-0,4)·10⁻³ см·с⁻¹ в расплаве KCl–NaCl–CsCl, характеризующее способ доставки к поверхности электрода электроактивных частиц, которое соизмеримо с диффузионной константой $\chi = D/\delta$.

Таблица 1. Электрохимические параметры процесса электровосстановления ионов DyCl_6^{3-} , полученные на вольфрамовом и серебряном электродах в расплаве KCl–NaCl (1:1) при *T* = 973 К. Электрод сравнения – Ag/AgCl

Материал	$C(\text{DyCl}_6^{3-})$	<i>V</i> ,	i _p ,	$i_{\rm p}\cdot V^{1/2},$	- <i>E</i> _p ,	$-E_{p/2},$	ΔE ,	10	010
электрода	$\cdot 10^4$, моль см ⁻³	B·c ⁻¹	$A \cdot cm^{-2}$	$\mathbf{A} \cdot \mathbf{c}^{1/2} \cdot \mathbf{c} \mathbf{M}^{-2} \cdot \mathbf{B}^{-1/2}$	B	B	В	п	un_{α}
		0,02	0,281	1,987	2,053	2,005	0,048	3,2	
		0,03	0,318	1,838	2,072	2,021	0,051	3,0	
W	3,8	0,1	0,494	1,563	2,085	2,026	0,059	3,1	
		0,5	0,963	1,362	2,182	2,094	0,088		2,1
		1,0	1,212	1,212	2,216	2,113	0,103		1,8
		0,03	0,417	2,425	1,770	1,709	0,061	3,0	
Ag 5,7		0,05	0,531	2,413	1,760	1,692	0,068	2,7	
	5,7	0,1	0,735	2,392	1,780	1,710	0,070	2,6	
		0,2	0,937	2,129	1,850	1,776	0,074		2,1
		0,5	1,320	1,885	1,910	1,808	0,106		1,5
		1,0	1,682	1,682	1,960	1,839	0,121		1,3

Таблица 2. Некоторые электрохимические параметры электровосстановления ионов DyCl_6^{3-} , на вольфрамовом и серебряном электродах в эвтектическом расплаве K,Na,Cs|Cl при *T* = 823 K. Электрод сравнения – стеклоуглерод

Материал электрода	С(DyCl ₆ ³⁻) ·10 ⁴ , моль см ⁻³	$V, \\ \mathbf{B} \cdot \mathbf{c}^{-1}$	$i_{\rm p},$ A·cm ⁻²	$i_{\mathrm{p}} \cdot V^{1/2},$ A·c ^{1/2} ·cm ⁻² ·B ^{-1/2}	<i>-Е</i> р, В	$-E_{\mathrm{p/2}},$ B	$\Delta E, B$	п	αn_{α}
		0,02	0,037	0,262	2,852	2,800	0,052	3,0	-
		0,05	0,060	0,267	2,896	2,830	0,066	2,4	-
		0,07	0,064	0,243	2,894	2,830	0,064	2,5	-
W	4,6	0,1	0,094	0,298	2,890	2,824	0,066	2,4	-
		0,2	0,108	0,243	2,943	2,850	0,093	-	1,4
		0,5	0,155	0,220	2,986	2,886	0,100	-	1,3
		1,0	0,198	0,198	3,071	2,941	0,130	-	1,0
		0,01	0,061	0,616	2,455	2,411	0,044	3,6	-
		0,02	0,106	0,755	2,455	2,409	0,046	3,4	-
		0,03	0,122	0,706	2,484	2,438	0,050	3,2	-
Ag	4,7	0,05	0,152	0,681	2,500	2,448	0,052	3,0	-
		0,07	0,179	0,680	2,519	2,460	0,059	2,7	-
		0,1	0,284	0,899	2,521	2,453	0,068	2,3	-
		0,2	0,384	0,861	2,550	2,470	0,080	-	1,7
		0,5	0,545	0,771	2,590	2,487	0,103	-	1,3
		1,0	0,668	0,668	2,682	2,538	0,144	-	0,9

В интервале скоростей поляризации V = (0,01-0,03) и (0,01-0,05) В·с⁻¹ на вольфрамовом электроде, (0,03-0,1) и (0,01-0,05) В·с⁻¹ на серебряном электроде

значение $i_p/V^{1/2}$ практически не зависит от $V^{1/2}$ и электродный процесс обратим (рис. 8, 9). В интервале скоростей поляризации (0,05-0,1) и (0,07-0,2) В·с⁻¹на вольфрамовом электроде, (0,1-0,2) и (0,07-0,2) В·с⁻¹ на серебряном электроде имеет место квазиобратимый процесс. При дальнейшем увеличении скорости поляризации соотношение $i_p/V^{1/2}$ уменьшается и стремится к постоянному значению, что указывает на переход к необратимому характеру стадии переноса заряда.

Рис. 6. Зависимость i_p волны электровосстановления ионов диспрозия от C(DyCl₃) на W (a) и Ag (б) электродах в расплаве KCl–NaCl–DyCl₃ при T = 973 K и V, B·c⁻¹: a) 1 – 0,02; 2 – 0,03; 3 – 0,05; 4 – 0,07; 5 – 0,1; б) 1 – 0,02; 2 – 0,05; 3 – 0,1; 4 – 0,2; 5 - 0.5

Рис. 7. Зависимость i_p волны электровосстановления ионов диспрозия от $C(\text{DyCl}_3)$ на W (a) и Ag (б) электродах в расплаве KCl–NaCl–CsCl–DyCl₃ при T = 823 K и V, B·c⁻¹: a) 1 - 0.02, 2 - 0.05, 3 - 0.07, 4 - 0.1, 5 - 0.2, 6 - 0.5, 7 - 1.0; б) 1 - 0.01, 2 - 0.02, 3 - 0.03, 4 - 0.05, 5 - 0.07, 6 - 0.1

Рис. 8. Зависимости $i_p/V^{1/2}$ от $V^{1/2}$ процесса электровосстановления ионов диспрозия, полученные на W (*a*) и Ag (*б*) электродах в расплаве KCl–NaCl– DyCl₃ при T = 973K и C(DyCl₃)·10⁴, моль/см³: a) 5,0; б) 5,7

Рис. 9. Зависимости $i_p/V^{1/2}$ от $V^{1/2}$ процесса электровосстановления ионов диспрозия, полученные на W (а) и Ag (б) электродах в расплаве KCl–NaCl–CsCl– DyCl₃ при T = 823 K и C(DyCl₃)·10⁴, моль/см³: a) 1 - 3,6, 2 - 5,6; б) 2,0

На графике зависимости E_p –lgV (рис. 10 и 11) отмечается постоянство E_p от скорости поляризации в интервале значений (0,02-0,07) и (0,01-0,1) В·с⁻¹ на вольфрамовом электроде, (0,03-0,1) и (0,01-0,1) В·с⁻¹ на серебряном электроде, и смещение потенциала пика в область отрицательных значений с ростом скорости поляризации ($V \ge 0,1$ В·с⁻¹), что свидетельствует об изменении характера электродного процесса.

Рис. 10. Зависимость E_p от lgV для процесса электровосстановления на W (*a*) и Ag (δ) электродах в расплаве KCl–NaCl– DyCl₃ при T = 973 K и C(DyCl₃)·10⁴, моль/см³: a) –5,0; δ) –5,7

Рис. 11. Зависимость E_p от lgV для процесса электровосстановления на W (a) и Ag (б) электродах в расплаве KCl–NaCl–CsCl–DyCl₃ при T = 823 K и C(DyCl₃)·10⁴, моль/см³: a) 5,6; б) 3,9

Для $V \le 0,1 \text{ B} \cdot \text{c}^{-1}$, значения полуширин пиков и рассчитанные по уравнению $\Delta E = -\frac{2.2RT}{nF}$ значения числа электронов, переносимых в электродном процессе, близко к трем. При $V \ge 0,1 \text{ B} \cdot \text{c}^{-1}$ происходит уширение волны и переход к необрати-

мому характеру стадии переноса заряда. Анализ полуширин пиков для этих скоростей поляризации по диагностическим критериям Мацуды, Аябе и Делахея (1) дает значение αn_{α} равное 1,3-2,5 в расплаве KCl–NaCl (973 K) и 0,8-2,4 в расплаве KCl–NaCl–CsCl (823 K).

$$\Delta E = -\frac{1.857RT}{\alpha n_{\alpha} F} \tag{1}$$

Таким образом, процесс электровосстановления ионов DyCl₆³⁻ можно представить следующей реакцией:

на вольфрамовом электроде

$$DyCl_6^{3-} + 3e = Dy^0 + 6Cl^-.$$
 (2)

на серебряном электроде

$$\text{DyCl}_{6}^{3} + 3e (\text{Ag}) = \text{Dy}_{x}\text{Ag}_{y} + 6\text{Cl}^{-}$$
 (3)

Для вольтамперных зависимостей, полученных при скоростях поляризации $(V \le 0,2 \text{ B} \cdot \text{c}^{-1})$, был проведен расчет коэффициента диффузии ионов DyCl_6^{3-} на основе уравнения Рендлса – Шевчика:

$$\boldsymbol{I}_{p}^{c} = 0,4463F^{3/2}R^{-1/2}T^{1/2}n^{3/2}ACD^{1/2}V^{1/2}$$
(4)

Коэффициент диффузии ионов диспрозия в расплаве KCl–NaCl при 973К составил $D(\text{DyCl}_6^{3-}) = (1,60\pm0,2)\cdot10^{-5} \text{ см}^2\cdot\text{c}^{-1}$. Коэффициент диффузии ионов диспрозия в эвтектическом расплаве KCl–NaCl–CsCl при 823К составил $D(\text{DyCl}_6^{3-}) = (0,5\pm0,2)\cdot10^{-5} \text{ см}^2\cdot\text{c}^{-1}$.

Потенциал электровосстановления ионов диспрозия на серебряном электроде имеет более положительные значения, чем для инертного вольфрамового электрода, что можно объяснить снижением активности диспрозия в металлической фазе в результате формирования различных интерметаллических соединений.

Электровосстановление ионов диспрозия в хлоридно-фторидных расплавах при 973 К

Волна восстановления ионов диспрозия при введении фторид-иона в расплав KCl–NaCl–DyCl₃ (рис. 12) растягивается и смещается в более отрицательную область по оси потенциалов с увеличением концентрации фторид-иона. Это можно объяснить изменением состава и строения комплексов диспрозия при переходе от хлоридных к хлоридно-фторидным расплавам (табл. 3). При увеличении мольнодолевого соотношения ионов фтора и диспрозия происходит переход от чисто хлоридных комплексов к смешанным хлоридно-фторидным и чисто фторидным комплексам.

В целом волна восстановления фторидных комплексов находится в более отрицательной области потенциалов и разность потенциалов пиков катодных и анодных процессов увеличивается по сравнению с чисто хлоридными расплавами. Таким образом, происходит переход от обратимого характера восстановления ионов диспрозия в хлоридных расплавах к необратимому в хлоридно-фторидных расплавах.

Рис. 12. Цикловольтамперограмма расплава KCl–NaCl–DyCl₃–NaF на W электроде, $S_w = 0,19 \text{ см}^2$, при 973 K. *I* – NaCl–KCl; (2–5) *C*(DyCl₃) = 6,0 · 10⁻⁴ моль · см⁻³; *C*(NaF) 10⁴, моль · см⁻³: *3* – 1,0; *4* – 2,0; *5* – 4,0, *V* = 0,5 B · c⁻¹. Электрод сравнения – стеклоуглерод

Таблица 3. Некоторые электрохимические параметры электровосстановления хлоридно-фторидных комплексов диспрозия в расплаве KCl–NaCl–NaF на вольфрамовом электроде, T = 973 K. Электрод сравнения – стеклоуглерод

$C(NaF) \cdot 10^4$, моль · см ⁻³	$V, \mathbf{B} \cdot \mathbf{c}^{-1}$	$i_{\rm p}, {\rm A} \cdot {\rm cm}^{-2}$	$i_{\rm p} \cdot V^{1/2}$, A·c ^{1/2} ·cm ⁻² ·B ^{-1/2}	<i>-Е</i> р, В	- <i>E</i> _{p/2} , B	$\Delta E, \mathbf{B}$
	0,03	0,37	2,18	2,423	2,365	0,058
	0,05	0,48	2,18	2,456	2,400	0,056
	0,07	0,56	2,16	2,456	2,386	0,070
1,0	0,1	0,65	2,03	2,507	2,424	0,083
	0,2	0,87	1,93	2,509	2,411	0,098
	0,5	1,30	1,86	2,531	2,466	0,065
	1,0	1,68	1,68	2,539	2,477	0,062
2,0	0,1	0,93	2,91	2,632	2,482	0,150
	0,2	1,33	2,96	2,644	2,481	0,163
	0,5	1,65	2,36	2,669	2,476	0,193
	1.0	2.02	2.02	2.682	2.464	0.218

Схему образования и разряда электрохимически активных комплексов при небольшом избытке фторид-ионов можно представить следующим образом:

$$DyCl_6]^{5^-} + xF^- \Longrightarrow [DyCl_{6^-x}F_x]^{5^-} + xCl^-$$
(5)

$$\left[\mathrm{DyCl}_{6-x}F_{x}\right]^{3-} + 3e \Longrightarrow \mathrm{Dy} + (6-x)\mathrm{Cl}^{-} + x\mathrm{F}^{-}$$
(6)

При большом избытке фторид-иона:

$$[DyCl_6]^{3-} + 6F \Longrightarrow [DyF_6]^{3-} + 6Cl^{-}$$
(7)

$$[DyF_6]^{3-} + 3e \Longrightarrow Dy + 6F^{-}$$
(8)

Совместное электровосстановление фторборат-иона и ионов диспрозия на вольфрамовом электроде в хлоридно-фторидных расплавах

На рисунках 13 представлены вольтамперные зависимости процесса совместного электровосстановления комплексов бора и диспрозия в расплавах KCl– NaCl–DyCl₃–KBF₄ и KCl–NaCl–CsCl–DyCl₃–KBF₄ на вольфрамовом электроде при 973 К и 823 К соответственно. Кривая 2 (рис. 13) соответствует разряду галогенидных комплексных ионов диспрозия. Введение фторборат-иона в расплав приводит к изменению как катодной, так и анодной частей вольтамперограммы (кривые 3-5), – появляются дополнительные волны восстановления при более положительных потенциалах и происходит растягивание волны восстановления ионов диспрозия по оси потенциалов. Анодному растворению катодного продукта соответствует одна или две волны в зависимости от концентрации KBF₄ при постоянной $C(DyCl_3)$. Предволна, наблюдаемая перед волной восстановления ионов диспрозия, по-видимому соответствует выделению диспрозия на боре. Наблюдаемая деполяризация восстановления диспрозия объясняется его взаимодействием с бором.

Рис. 13. Цикловольтамперограммы расплава KCl–NaCl–DyCl₃–KBF₄ и KCl–NaCl– CsCl–DyCl₃–KBF₄. *C*(DyCl₃)·10⁴, моль/см³·: a) *1* – 4,0; (2–5)– 7,0; б) (2–5) – 2,4; *C*(KBF₄)·10⁴, моль/см³·: a) (3-5) – 7,0; б) *3* – 2,4; (4, 5) – 7,2. Потенциал возврата, – E, B: a) *1-3* – 2,7; *4* – 2,3; *5* – 1,6. *V*, B·c⁻¹; a) 0,2; б) 0,07. *T* = 973 и 823 К соответственно; катод – W; электрод сравнения – CУ; S_w, см²: a) 0,2; б) 0,34

Вольтамперные зависимости расплава KCl–NaCl–DyCl₃–KBF₄ и KCl–NaCl– CsCl–DyCl₃–KBF₄ при различных потенциалах возврата позволяют проследить соответствие катодной и анодной ветвей и выделить волны восстановления и окисления как для различных соединений Dy–B (рис. 14 а, кривые 1-4), так и для индивидуального бора (рис. 14 а, кривая 5). На основании этих данных можно сделать вывод, что электросинтез боридов диспрозия можно провести только в кинетическом режиме.

Рис. 14. Цикловольтамперограммы расплава KCl–NaCl–DyCl₃–KBF₄ и KCl–NaCl– CsCl–DyCl₃–KBF₄. *C*(DyCl₃)·10⁴, моль·см⁻³: a) 7,0 ; б) 2,4. *C*(KBF₄)·10⁴, моль·см⁻³: a) 14,0; б) 7,2. Потенциал возврата, –E, B: a) *1* –3,0; *2* –2,28; *3* – 1,9; *4* – 1,6; *5* – 1,45; б) *1* – 3,1; *2* – 2,75; *3* – 2,3; *4* – 2,1. *V*, B/c: a) 0,1; б) 0,07. *T* = 973 и 823 К соответственно; катод – W; Электрод сравнения – СУ. S_w, см²: a) 0,2; б) 0,34

Совместное электровосстановление фторсиликат-иона и ионов диспрозия на вольфрамовом электроде в хлоридно–фторидных расплавах

На рисунке 15 представлены циклические вольтамперные зависимости процесса совместного электровосстановления комплексов кремния и диспрозия в расплаве KCl–NaCl–DyCl₃–K₂SiF₆ на вольфрамовом электроде при 973 К. Кривая 2 соответствует разряду галогенидных комплексных ионов диспрозия при потенциалах –(2,2-2,3) В относительно стеклоуглеродного электрода сравнения. Введение ионов кремния в расплав приводит к изменению катодной и анодной частей вольтамперограмм (кривые 3–7), происходит растягивание волны восстановления по оси потенциалов. Анодному растворению продукта катодного цикла соответствует несколько волн, число которых зависит от концентрации K_2SiF_6 при постоянной концентрации DyCl₃. Предволна, наблюдаемая на вольт-амперных кривых перед волной восстановления иона диспрозия, соответствует его выделению на осажденном Si. Наблюдаемая деполяризация может быть вызвана взаимодействием диспрозия и кремния. Эти результаты также позволяют сделать вывод, что электросинтез силицидов диспрозия можно провести только в кинетическом режиме.

Рис. 15. Цикловольтамперограммы расплава KCl–NaCl–DyCl₃–K₂SiF₆ на W электроде при 973 K и скорости поляризации 0,07 B·c⁻¹, *I* – NaCl–KCl, *2* – *C*(DyCl₃) = 3,4·10⁻⁴ моль·см⁻³, *3*-7 – *C*(K₂SiF₆) = 1,7·10⁻⁴ моль·см⁻³. Различные потенциалы возврата, –*E*, B: *3* – 2,5; *4* – 1,95; *5* – 1,75; *6* – 1,55; 7 – 1,1. S_w = 0,2 см². Электрод сравнения – стеклоуглерод

Электрохимический синтез боридов диспрозия в хлоридно-фторидных расплавах

Электросинтез боридов диспрозия осуществляли в расплавах KCl–NaCl– DyCl₃–KBF₄ при 973 K и KCl–NaCl–CsCl–DyCl₃–KBF₄ при 823 K. В этой системе в зависимости от состава расплава и параметров электролиза получались как индивидуальная фаза бора, высшего борида DyB₆ (рис. 16 а и б, рис. 17 а и б), так и смеси фаз, включая DyB₄ (рис. 16 в и г, рис. 17 в и г).

Рис. 16. Рентгенограмма порошков DyB₆,(а, б) и DyB₄ (в, г) полученных из расплавов KCl–NaCl–DyCl₃–KBF₄ (а, в) и KCl–NaCl–CsCl–DyCl₃–KBF₄ (б, г). Напряжение на ванне, В: 2,8 (а); 3,0 (б); 2,7 (в); 2,85 (г). Продолжительность электролиза, мин: 120 (а, б); 90 (в); 60 (г). Подложка – W, *T*, K: 973 (а, в); 823 (б, г)

Рис. 17. SEM продукта потенциостатического электролиза из расплавов: (а, в) KCl–NaCl–DyCl₃–KBF₄ при U, B = 2,8 (а); 2,7 (в) и T = 973 K; (б, г) KCl–NaCl–CsCl–DyCl₃–KBF₄ при U, B =3,0.(б); 2,85 (г) и T = 823 K. Продолжительность электролиза, мин: 120 (а, б); 90 (в); 60 (г), подложка – W

Появление фазы борида в катодном осадке начинается при мольном соотношении $DyCl_3$: $KBF_4 = 1 : 1$. При дальнейшем повышении содержания фторбората калия в расплаве увеличивается содержание боридных фаз в катодном осадке. При мольном соотношении $DyCl_3$: $KBF_4 = 1 : 3$ и выше – до 1 : 6 происходит образование высшего борида DyB_6 .

Построенные интегральные и дифференциальные кривые распределения размеров позволили оценить гранулометрический состав полученных порошков размер которых находится в пределах от 0,01 до 10 мкм. Более крупные частицы представляют собой слипшиеся агломераты из мелких частиц (рис. 17 и 18).

Рис. 18. Интегральная и дифференциальная кривые распределения размера частиц катодного осадка, полученного из расплава KCl– NaCl–DyCl₃–KBF₄ (а) и KCl–NaCl– CsCl–DyCl₃–KBF₄ (б), температура, K: 973 (а); 823 (б)

Представленные в таблицах 4 и 5 данные показывают зависимость фазового состава катодных осадков от продолжительности ведения электролиза в электролитах оптимального состава, температуры, напряжения на ванне.

Таблица 4. Зависимость состава продукта потенциостатического электролиза расплава KCl–NaCl–DyCl₃–KBF₄ от состава электролита, напряжения на ванне и мольного соотношения компонентов расплава, T = 973 K

Состав электролита, вес.%	Напряжение	Продолжитель-	Ка-	Фаза			
	Ū, B	ность τ, мин	тод				
1. Мольное соотношение $DyCl_3$: KBF ₄ = 1 : 1,8							
NaCl – 39,51; KCl – 50,28; DyCl ₃ –	2,6	70	W	DyB ₂ ,			
5,26; KBF ₄ -4,95				DyB_4			
2. Мольное соотношение DyCl ₃ : KBF ₄	= 1 : 6						
NaCl – 37,04; KCl – 47,14; DyCl ₃ –	2,7	90	W	DyB_4			
4,15; KBF ₄ -11,67							
3. Мольное соотношение $DyCl_3$: KBF ₄ = 1 : 3							
NaCl – 39,43; KCl – 50,18; DyCl ₃ –	2,7	90	Ag	DyB_4			
$4,42; \text{ KBF}_4 - 5,97$							
4. Мольное соотношение DyCl ₃ : KBF ₄	= 1 : 6						
NaCl – 31,88; KCl – 40,58; DyCl ₃ –	2,8	120	W	DyB ₆			
7,54; KBF ₄ – 20,00							
5. Мольное соотношение $DyCl_3$: KBF ₄ = 1 : 6							
NaCl – 32,59; KCl – 41,48; DyCl ₃ –	2,8	120	Ag	DyB ₆			
6,67; KBF ₄ – 19,26							

Таблица 5. Зависимость состава продукта потенциостатического электролиза расплава KCl–NaCl–CsCl–DyCl₃–KBF₄ от состава электролита, напряжение на ванне и мольного соотношения компонентов расплава, T = 823 K

Состав электролита, вес.%	Напряжение	Продолжительность	Катод	Фаза
	U, B	τ, мин		
1. Мольное соотношение $DyCl_3$:	$KBF_4 = 1 : 3,2$			
NaCl – 18,12; KCl – 20,91; CsCl	2,70	45	W	DyB_2 ,
– 51,91; DyCl ₃ – 3,62; KBF ₄ –				DyB ₆₆
5,44				
2. Мольное соотношение $DyCl_3$:	$KBF_4 = 1 : 4$			
NaCl – 16,51; KCl – 19,05; CsCl	2,90	60	W	DyB ₆₆
– 47,29; DyCl ₃ – 5,97; KBF ₄ –				
11,18				
3. Мольное соотношение $DyCl_3$:	$KBF_4 = 1 : 3$			
NaCl – 18,02; KCl – 20,79; CsCl	2,85	60	W	DyB ₄ ,
-51,62; DyCl ₃ $-4,02$; KBF ₄ $-$				DyB ₆₆
5,55				
4. Мольное соотношение DyCl ₃ :	$KBF_4 = 1 : 3$			
NaCl – 16,75; KCl – 19,32; CsCl	3,00	120	W	DyB ₆
-47,96; DyCl ₃ $-6,66$; KBF ₄ $-$				
9,31.				

В целом процесс электросинтеза боридов диспрозия определяется взаимосвязанными параметрами: составом электролизной ванны, напряжением на ванне, продолжительностью электролиза, температурой. Выход однофазного продукта DyB_6 составляет 0,2-0,3 г·A⁻¹·ч⁻¹. Выход однофазного продукта DyB_4 составляет 0,15-0,2 г·A⁻¹·ч⁻¹.

Электрохимический синтез силицидов диспрозия в хлоридно-фторидных расплавах

Электросинтез силицидов диспрозия осуществляли в расплавленной смеси KCl–NaCl–DyCl₃–K₂SiF₆ при 973 К. В указанной системе в зависимости от состава расплава и параметров электролиза получались как индивидуальная фаза кремния, высшего силицида $DySi_{1,4}$ (рис. 19 а и рис. 20 а), так и смеси фаз, включая Dy_5Si_3 (рис. 19 б и рис. 20 б).

Рис. 19. Рентгенограмма порошка DySi_{1,4},(a) и Dy₅Si₃ (б), полученного электролизом расплава KCl–NaCl– DyCl₃– K₂SiF₆. Напряжение на ванне = 2,8 В. Продолжительность электролиза, мин: 120 (a); 80 (б); подложка – W, T = 973 K

Рис. 20. SEM образцов DySi_{1,4} (a), и Dy₅Si₃ (б), полученных потенциостатическим электролизом из расплава KCl–NaCl–DyCl₃–K₂SiF₆. Напряжение на ванне = 2,8 В (а и б), продолжительность электролиза – 120 мин (а) и 80 мин (б). T = 973 К, подложка – W

Построенные интегральные и дифференциальные кривые распределения частиц позволили оценить гранулометрический состав полученных порошков от 0,01 до 0,1 мкм (рис. 21).

Рис. 21. Интегральная и дифференциальная кривые распределения размера частиц катодного осадка, полученного при 973 К в расплаве KCl–NaCl–DyCl₃– K₂SiF₆

Данные таблицы 6 показывают зависимость фазового состава катодных осадков от параметров электролиза.

Таблица 6. Зависимость фазового состава продукта электролиза расплава KCl–NaCl–DyCl₃–K₂SiF₆ от продолжительности процесса, T = 973 K, E = 2.8 B

Состав расплава, мас.%	Продолжительность электролиза, мин.				
	10	30-50	70	90 и более	
NaCl – 37,1; KCl – 47,4;	Si	Si, Dy ₅ Si ₃	Dy ₅ Si ₃ ,	DySi _{1.4}	
$DyCl_3 - 4,5; K_2SiF_6 - 11,0$			DySi _{1.4}		

Таким образом, процесс электрохимического синтеза боридов и силицидов диспрозия можно представить в виде следующих последовательных стадий:

- электровосстановление ионов бора и кремния;
- электровосстановление ионов диспрозия на предварительно выделенном боре (диспрозии);
- взаимодействие на атомарном уровне диспрозия и бора (кремния) с образованием различных по составу боридных и силицидных фаз диспрозия.

Электрохимические процессы, происходящие при образовании боридов диспрозия, можно представить следующими уравнениями:

$BF_{4-x}Cl_x^- + 3e \longrightarrow B + (4-x)F^- + xCl^-$	(9)
$DyCl_{6-y}F_{y}^{3-} + 3e \rightarrow Dy + (6-y)Cl^{-} + yF^{-}$	(10)
$qB + pDy = Dy_pB_q$	(11)

Электрохимические процессы, происходящие при образовании силицидов диспрозия, можно представить следующими уравнениями:

$SiF_{6-x}Cl_x^{2-} + 4e^- \rightarrow Si + (6-x)F^- + xCl^-$	(12)
$DyCl_{6-y}F_y^{3-} + 3e^- \rightarrow Dy + (6-y)Cl^- + yF^-$	(13)
$qSi + pDy = Dy_pSi_q$	(14)

Таким образом, показана возможность электрохимического синтеза боридов и силицидов диспрозия в галогенидных расплавах. Полученные результаты могут быть взяты за основу при практической реализации высокотемпературного электрохимического синтеза боридов и силицидов диспрозия.

выводы

1. Установлено, что электровыделение металлического диспрозия на различных электродных материалах из хлоридных расплавов является первичным электрохимическим процессом и происходит при потенциалах положительнее потенциалов разложения хлоридов щелочных металлов. Показано, что вольфрам является индифферентным электродным материалом, а серебряный и алюминиевый электрод взаимодействуют с выделяющимся диспрозием, вызывая деполяризацию процесса электровосстановления хлоридных комплексов DyCl_6^{3-} . На стеклоуглеродном электроде имеет место образование соединений диспрозия с углеродом.

2. Установлен механизм электровосстановления хлоридных комплексов диспрозия на фоне эквимольного KCl–NaCl и эвтектического KCl–NaCl–CsCl расплавов. Процесс электровосстановления хлоридных комплексов DyCl_6^{3-} протекает в одну трёхэлектронную стадию и при стационарных условиях поляризации имеет обратимый характер и лимитируется стадией диффузионной доставки, а при нестационарных условиях поляризации сказывается замедленность стадии переноса заряда.

3. Показано, что потенциал электровосстановления ионов диспрозия смещается в отрицательную область при добавлении фторид - ионов в хлоридный расплав вследствие образования смешанных хлоридно-фторидных [DyCl_{6-x}F_x]³⁻ и фторидных комплексов диспрозия DyF₆³⁻. Введение фторид иона изменяет также характер электродного процесса от обратимого при электровосстановлении хлоридных комплексов к необратимому процессу при электровосстановлении фторидных комплексов диспрозия.

4. Рассчитаны коэффициенты диффузии хлоридных комплексов DyCl_6^{3-} в эквимольном KCl–NaCl (973 K) и эвтектическом KCl–NaCl–CsCl (823 K) расплавах: $D(\text{DyCl}_6^{3-}) = (1,6 \pm 0,2) \cdot 10^{-5} \text{ см}^2 \cdot \text{c}^{-1}$ и $(0,5 \pm 0,2) \cdot 10^{-5} \text{ см}^2 \cdot \text{c}^{-1}$ соответственно.

5. На основании результатов исследования совместного электровосстановления ионов диспрозия с фторборат- и фторсиликат-ионами показано, что электросинтез боридов и силицидов диспрозия возможен в кинетическом режиме.

6. Реализован высокотемпературный электрохимический синтез боридов и силицидов диспрозия из расплавов KCl–NaCl–DyCl₃–KBF₄(K₂SiF₆), KCl–NaCl–CsCl–DyCl₃–KBF₄. Установлена зависимость фазового состава продуктов электролиза от температуры, состава электролизной ванны, напряжения на ванне, продолжительности электролиза. Определены оптимальные условия получения фаз DyB₄, DyB₆, Dy₅Si₃, DySi_{1,4}.

По теме диссертации опубликованы следующие работы:

1. Кушхов, Х. Б. Механизм злектровосстановления ионов диспрозия в хлоридном расплаве на различных злектродах [Текст] / Х. Б. Кушхов, А. С. Узденова, **А. М. Кахтан**, Л. А. Узденова // Доклады Адыгской (Черкесской) Международной академии наук. – 2012. – Том 14. – № 2. – С. 88-98.

2. Kushkhov, Kh. B. The electroreduction of gadolinium and dysprosium ions in equimolar NaCl-KCl melt [Text] / Kh. B. Kushkhov, A. S. Uzdenova, A. M. F. Qahtan, M. M. A. Saleh, L. A. Uzdenova // American Journal of Analytical Chemistry. – 2013. – Published Online. – June 2013. – No. 4. – P. 39-46.

3. Кахтан, А. М. Ф. Исследование процесса электровосстановления ионов диспрозия в хлоридном расплаве [Текст] / А. М. Ф. Кахтан, Л. А. Узденова // Материалы международной научной конференции студентов, аспирантов и молодых учёных «Перспектива-2013». – Нальчик. – 2013. – Том II. – С. 183-188.

4. Кушхов, Х. Б. Электровосстановление ионов диспрозия в эквимолярном расплаве NaCl-KCl [Текст] / Х. Б. Кушхов, А. С. Узденова, **А. М. Кахтан**, М. М. А. Салех, Л. А. Узденова // Тез. докл. XVI Рос. конф. по физ. химии и электрохимии распл. и твердых электролитов. – Екатеринбург. – 2013. – Том I. – С. 182-184.

5. Кушхов, Х. Б. Высокотемпературный электрохимический синтез боридов диспрозия в хлоридных расплавах [Текст] / Х. Б. Кушхов, А. С. Узденова, А. М. Ф. Кахтан, М. М. А. Салех, Л. А. Узденова // Тез.докл. XVI Рос. конф. по физ. химии и электрохимии распл. и твердых электролитов. – Екатеринбург. – 2013. – Том I. – С. 179-181.

6. Кушхов, Х. Б. Исследование электрохимического восстановления ионов диспрозия в хлоридном расплаве на различных электродах [Текст] / Х. Б. Кушхов, А. С. Узденова, А. М. Ф. Кахтан, Л. А. Узденова // Расплавы. – 2013. – № 5. – С. 25-39.

7. Kushkhov, Kh. B. Electrosynthesis of dysprosium borides in NaCl–KCl melt at 973 K [Text] / Kh. B. Kushkhov, A. S. Uzdenova, A. M. F. Qahtan., M. R. Tlenkopachev, L. A. Uzdenova // SOP Transactions on Physical Chemistry. -2014. - V. 2. - No. 1. - P. 9-13.

8. Кушхов, Х. Б. Исследование совместного электровосстановления кремния и диспрозия в хлоридных расплавах [Текст] / Х. Б. Кушхов, А. С. Узденова, А. **М. Ф. Кахтан**, Л. А. Узденова // Сборник научных трудов по материалам Междун. научно-практ. конф. «Акт. вопросы образ. и науки», 30 декабря 2013 г. – Тамбов: Изд-во ТРОО. – 2014. – Ч. 14. – С. 62–64.

9. Патент РФ. 2013 (RU 2510630). Электролитический способ получения ультрадисперсного порошка гексаборида диспрозия [Текст]. Кушхов Х. Б., Узденова А. С., Кахтан А. М. Ф., Узденова Л. А. Опубликовано: 10.04.2014 Бюл. № 10.

10. Кушхов, Х. Б. Исследование электровосстановления ионов диспрозия на различных электродах в расплаве KCl–NaCl–CsCl при T = 823 K [Текст] / Х. Б. Кушхов, А. М. Ф. Кахтан, А. С. Узденова, М. Р. Тленкопачев, Л. А. Узденова // Расплавы. – 2014. – №4. – С. 60-69