На правах рукописи

Николаев Андрей Юрьевич

ПОЛУЧЕНИЕ ЛИГАТУР АЛЮМИНИЙ-СКАНДИЙ В РАСПЛАВАХ KF-NaF-AlF₃-Sc₂O₃

Специальность 2.6.9. Технология электрохимических процессов и защита от коррозии

Автореферат

диссертации на соискание учёной степени кандидата химических наук

Екатеринбург 2021 Работа выполнена в лаборатории электродных процессов Федерального государственного бюджетного учреждения науки Института высокотемпературной электрохимии Уральского отделения РАН

Научный руководитель:	Зайков Юрий Павлович, доктор химических наук, профессор, научный руководитель ФГБУН Института высокотемпературной электрохимии УрО РАН		
Официальные оппоненты:	Кушхов Хасби Билялович, доктор химических наук, профессор, заведующий кафедрой неорганической и физической химии Кабардино-Балкарского государственного университета им. Х.М. Бербекова		
	Пасечник Лилия Александровна, кандидат химических наук, ведущий научный сотрудник лаборатории химии соединений рассеянных редких элементов ФГБУН Института химии твердого тела УрО РАН		
Ведущая организация:	ФГБУН Институт металлургии Уральского отделения РАН, г. Екатеринбург		

Защита состоится «8» декабря 2021 года в 13⁰⁰ на заседании диссертационного совета Д 24.1.045.01 при Федеральном государственном бюджетном учреждении науки Институте высокотемпературной электрохимии УрО РАН по адресу: г. Екатеринбург, ул. Академическая, 20.

Отзывы на автореферат в двух экземплярах, подписанные и заверенные гербовой печатью, просим выслать по адресу: 620990, г.Екатеринбург, ул. Академическая, 20, Институт высокотемпературной электрохимии УрО РАН. Ученому секретарю диссертационного совета Кулик Нине Павловне. E-mail: N.P.Kulik@ihte.uran.ru.

С диссертацией можно ознакомиться в Центральной научной библиотеке УрО РАН и на сайте ИВТЭ УрО РАН: <u>http://www.ihte.uran.ru/?page_id=16769</u>

Автореферат диссертации разослан «____» октября 2021 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Herey

Н.П. Кулик

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. С развитием робототехники, автомобиле- и судостроения, аэрокосмической промышленности резко возрос спрос на сплавы и композиционные материалы на основе алюминия. Востребованными полупродуктами являются алюмо-скандиевые лигатуры, которые могут применяться для модифицирования существующих и создания новых алюминиевых сплавов.

В настоящее время высокая себестоимость производимых сплавов и лигатур Al-Sc ограничивает объем их использования. Обусловлено это тем, что существующие технологии получения сплавов и лигатур Al-Sc включают алюмотермическое восстановление солей скандия под слоем солевого флюса при температуре около 900°C. В качестве сырья используются относительно дорогой фторид скандия и алюминий, получаемый электролизом криолит-глиноземного расплава. Таким образом, стоимость получения и транспортировки алюминия и фторида скандия включаются в себестоимость производимого сплава Al-Sc. Помимо этого, существенным недостатком является необходимость периодической замены или регенерации солевого флюса, используемого при получении сплава. Это вызывает невозвратные потери ценного скандийсодержащего компонента и удорожание конечного продукта.

Экономически более выгодным представляется электролизное получение лигатур Al-Sc из более дешевого скандийсодержащего сырья – Sc₂O₃. Такой способ исключает операции охлаждения, транспортировки и повторного нагрева полученного чистого алюминия, а также не требует дополнительного реактора для производства лигатур Al-Sc. Однако и данная технология обладает рядом существенных недостатков, среди которых высокая температура процесса (950-960°C), низкая степень извлечения скандия, высокие энерго- и ресурсозатраты.

В качестве альтернативы были предложены электролитические способы получения лигатур Al-Sc из расплавов LiF-ScF₃-ScCl₃-Sc₂O₃ при 750-850°C, KF-AlF₃-Sc₂O₃ при 750°C, CaCl₂-Sc₂O₃ при 850°C, KCl-LiCl-ScCl₃-AlCl₃ при 450-500°C, а также инжекция порошковой смеси фторидов и оксидов Na, K, Ca, Al, Sc инертным газом в расплавленный алюминий.

Наиболее перспективным из перечисленных способов представляется получение лигатур Al-Sc электролизом расплава KF-AlF₃ с добавками NaF, Al₂O₃ и Sc₂O₃ при 700-

 800° С. Выбранный расплав не гигроскопичен, и для реализации процесса не требуются дорогостоящие ScF₃ и ScCl₃. Однако данные относительно кинетики и механизма электровыделения как алюминия, так и алюминия со скандием при электролизе данного расплава, необходимые для разработки научных основ технологии, ограничены и противоречивы.

Степень разработанности темы исследования. Известны работы по изучению механизма электровыделения алюминия методами вольтамперометрии И хроноамперометрии на платине [1], графите [2-4] из расплавов KF-AlF₃-Al₂O₃ при 700-750°C. Показано, что при разряде алюминия на платине образуется ряд интерметаллидных соединений, выделение алюминия на графите сопровождается разрядом калия и быстрым разрушением графита. Эти процессы затрудняют понимание механизма катодного процесса и влияют на оценку кинетических параметров катодного выделения алюминия из расплава KF-AlF₃-Al₂O₃. Эксперименты по исследованию совместного электровыделения алюминия и скандия из расплавов KF-AlF₃-Al₂O₃-Sc₂O₃ на вольфраме [5,6] также не проясняют механизм катодного процесса.

Цель работы. Разработать электрохимический способ получения лигатур Al-Sc в расплаве KF-NaF-AlF₃-Sc₂O₃.

Основные задачи исследования:

- экспериментальное исследование кинетики и закономерностей механизма катодного электровыделения алюминия из расплавов KF-AlF₃ с добавками NaF и Al₂O₃;

- изучение кинетики и закономерностей механизма совместного катодного электровыделения алюминия и скандия из расплавов KF-AlF₃ с добавками NaF и Sc₂O₃;

 определение режимов синтеза лигатур Al-Sc при электролизе расплавов KF-AlF₃, KF-NaF-AlF₃ с добавками Sc₂O₃;

- синтез лигатур Al-Sc при электролизе расплавов KF-NaF-AlF₃ с добавками Sc₂O₃;

- изучение влияния условий синтеза на структуру Al-Sc лигатур.

Научная новизна работы. Установлены кинетические параметры и уточнен механизм электровыделения алюминия из расплавов KF-AlF₃-Al₂O₃ и KF-NaF-AlF₃-Al₂O₃ при варьировании состава электролита и условий электролиза. Впервые получены систематические данные по кинетике совместного электровыделения алюминия и скандия из расплавов KF-AlF₃-Sc₂O₃ и KF-NaF-AlF₃-Sc₂O₃ в зависимости от состава

расплава и условий электролиза, определены закономерности механизма их совместного электровыделения. Установлены закономерности алюмотермического восстановления Sc_2O_3 в расплаве KF-NaF-AlF₃-Sc₂O₃. Определены параметры электролитического синтеза лигатур в расплаве KF-NaF-AlF₃ с добавками Sc_2O_3 . Электролизом расплава KF-NaF-AlF₃ с добавками Sc_2O_3 . Электролизом расплава KF-NaF-AlF₃ с добавками Sc_2O_3 получены Al-Sc лигатуры с содержанием скандия до 2,5 мас.% на жидкометаллическом алюминиевом катоде, а также катодные осадки, содержащие преимущественно фазы интерметаллидного соединения Al₃Sc, на вольфрамовом катоде. Разработан и апробирован на крупнолабораторном электролизере с силой тока 100 A новый энергоэффективный способ получения лигатур Al-Sc с содержанием скандия до 2,5 мас.%. Разработаны рекомендации для опытно-промышленной реализации способа.

Теоретическая значимость работы. Установлена кинетика и закономерности механизма электровыделения алюминия, а также совместного электровыделения алюминия со скандием из легкоплавких расплавов на основе системы KF-AlF₃ с добавками NaF, Al₂O₃ и Sc₂O₃. Определено влияние температуры, мольного отношения ([KF]+[NaF])/[AlF₃], концентраций Al₂O₃ и Sc₂O₃ в электролите на кинетику катодного процесса.

Практическая значимость работы. Полученные результаты являются основой для разработки новых ресурсосберегающих технологий получения алюминия и лигатур Al-Sc при электролизе расплавов KF-AlF₃ с добавками NaF, Al₂O₃ и Sc₂O₃. Разработанные способы экспериментально апробированы в ООО «РУСАЛ ИТЦ».

Методология и методы исследования

При электролизе расплава KF-NaF-AlF₃-Sc₂O на катоде первым выделяется был алюминий. Поэтому начальный этап исследований посвящен изучению электрохимического восстановления алюминия, имеющиеся в литературе сведения о котором крайне ограничены. Вторая часть работы касалась совместного электровыделения алюминия и скандия при получении лигатур.

Для решения поставленных задач использовались следующие электрохимические методы: измерение поляризации В стационарных условиях, циклическая хроновольтамперометрия, гальваностатический электролиз. Для определения элементного и фазового состава расплавов и полученных лигатур Al-Sc использовали индуктивно-связанной атомно-эмиссионную спектроскопию с плазмой,

рентгенофазовый анализ, сканирующую электронную микроскопию, микрорентгеноспектральный анализ, метод карботермического восстановительного плавления в потоке инертного газа (для определения концентрации кислорода в электролите). Микротвердость лигатур измеряли методом вдавливания алмазных наконечников по восстановленному отпечатку.

Положения, выносимые на защиту:

- закономерности кинетики и механизма катодного электровыделения алюминия из расплавов KF-AlF₃ с добавками NaF и Al₂O₃;

- закономерности кинетики и механизма совместного катодного электровыделения алюминия и скандия из оксидно-фторидных и фторидных расплавов с добавками Sc₂O₃ и ScF₃;

- влияние мольного отношения ([KF]+[NaF])/[AlF₃], добавок NaF, Al₂O₃ и Sc₂O₃, материала катода и условий поляризации на кинетические параметры электровыделения алюминия, а также алюминия со скандием из расплавов на основе системы KF-AlF₃;

- закономерности алюмотермического восстановления Sc_2O_3 и параметры синтеза лигатур Al-Sc в расплаве KF-NaF-AlF₃ с добавками Sc_2O_3 ;

- условия синтеза лигатур Al-Sc при электролизе расплавов KF-NaF-AlF₃ с добавками Sc₂O₃;

- структура лигатур Al-Sc в зависимости от условий синтеза.

Личный вклад автора. Выбор цели и направлений исследований, участие в постановке задач и непосредственное проведение экспериментов, анализ и обобщение полученных результатов, их научно-теоретическое обоснование, подготовка научных публикаций.

Достоверность полученных результатов диссертации подтверждена систематическими исследованиями с использованием современных приборов и методов электрохимического анализа, а также аттестованных методик аналитического контроля.

Апробация работы. Основные результаты диссертационной работы представлены на Международной научно-технической конференции «Металлургия легких и тугоплавких металлов» (Екатеринбург, 2014), Международных научно-практических конференциях «Теория и практика современных электрохимических производств» (Санкт-Петербург, 2014, 2016), Международной научно-практической конференции «Современные тенденции в области теории и практики добычи и

переработки минерального и техногенного сырья» (Екатеринбург, 2014), TMS 144th Annual Meeting & Exhibition (TMS-2015, Orlando, Florida, USA), XIV Российской конференции «Строение и свойства металлических и шлаковых расплавов (МиШР-14)» Всероссийской (Екатеринбург, 2015), 2-й молодежной научной конференции «Инновации в материаловедении» (Москва, 2015), 10th International Frumkin Symposium on Electrochemistry (Moscow, 2015), ІІ-й Всероссийской научной конференции с международным участием «Исследования и разработки в области химии и технологии функциональных материалов» (Апатиты, 2015), VII и VIII Международных конгрессах и выставках «Цветные металлы и минералы» (Красноярск, 2015, 2016), 26-й, 28-й и 29-й Российских молодежных научных конференциях «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2016, 2018, 2019), V-й Международной конференции-школе по химической технологии XT'16 (Волгоград, 2016), XX Менделеевском съезде по общей и прикладной химии (Екатеринбург, 2016), 1-й Международной конференции по интеллектоемким технологиям в энергетике (физическая химия и электрохимия расплавленных и твердых электролитов) (Екатеринбург, 2017), 18th Israeli-Russian Bi-National Workshop "The optimization of composition, structure and properties of metals, oxides, composites, nano and amorphous materials" (Ein Bokek, Israel, 2019).

Публикации. Основное содержание диссертации отражено в 29 печатных работах, в том числе в 11 статьях в журналах баз данных Scopus и Web of Science и журналах из Перечня ВАК, 18 публикациях в материалах отечественных и зарубежных конференций, а также 4 патентах РФ и 1 международной заявке на изобретение.

Объем и структура работы. Диссертационная работа состоит из введения, 3 глав, выводов и списка цитируемой литературы. Работа изложена на 116 страницах машинописного текста, включает 12 таблиц, 65 рисунков. Библиографический список содержит 111 ссылок.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность выбранной темы, сформулированы ее цели и задачи, определены научная новизна и возможные области применения результатов исследования.

В первой главе представлены имеющиеся в литературе данные, касающиеся кинетики и механизма катодного процесса в расплавах KF-AlF₃ с добавками NaF и Al₂O₃. На основании доступных сведений о физико-химических свойствах исследуемых систем выбраны составы расплавов и условия проведения экспериментов. Подробно изложены методики приготовления расплавов, описаны экспериментальные установки и методики стационарных и нестационарных экспериментальных электрохимических исследований. Приведены результаты измерений и данные о кинетике катодного электровыделения алюминия на стеклоуглероде и вольфраме из расплавов KF-AlF₃ с добавками NaF и Al₂O₃ в зависимости от температуры, мольного соотношения ([KF]+[NaF])/[AlF₃], содержания Al₂O₃ и NaF в расплаве. На основании анализа этих данных предложены закономерности механизма катодного процесса в расплавах KF-AlF₃ с добавками NaF и Al₂O₃.

На Рисунке 1 приведены стационарные катодные поляризационные кривые, полученные на стеклоуглероде и вольфраме в расплаве KF-AlF₃-Al₂O₃ с [KF]/[AlF₃] = 1.3 моль/моль и разным содержанием Al₂O₃ (0,1; 3,0; 5,5 мас.%) при температуре 750°С. При поляризации катода происходит смещение потенциала в область отрицательных значений до величины - (0,3–0,5) В относительно потенциала алюминиевого электрода сравнения.

Дальнейшая поляризация катода приводит к появлению перегиба на поляризационной зависимости и сдвигу потенциала до значений - (0,7–0,8) В. Наблюдаемая площадка соответствует предельной плотности тока электровыделения алюминия. Отрицательнее - (0,7–0,8) В начинается выделения щелочного металла.

Стоит отметить, что с увеличением содержания Al_2O_3 в расплаве возрастает величина предельного тока электровыделения алюминия. Так, на вольфрамовом электроде при концентрации 0,1 мас.% он равен 0,42 A/cm², а при 5,5 мас.% достигает величины 0,7 A/cm². Непропорциональное изменение предельного тока с повышением содержания Al_2O_3 указывает на то, что исследуемый процесс контролируется

смешанной кинетикой или происходит уменьшение площади электрода из-за его частичной пассивации. Последнее возможно за счет изменения состава приэлектродного слоя и образования на поверхности электрода проводящего твердожидкого слоя соли при переходе в двухфазную область фазовой диаграммы, который экранирует часть поверхности электрода.

Рисунок 1 – Стационарные поляризационные кривые на стеклоуглероде (*A*) и вольфраме (*Б*) в расплаве KF-AlF₃-Al₂O₃ ([KF]/[AlF₃] = 1,3 моль/моль) при 750°С. Содержание Al₂O₃ в расплаве, мас.%: *1* – 0,1; *2* – 3,0; *3* – 5,5

На Рисунках 2 и 3 показано влияние температуры на кинетику катодного электровыделения алюминия из расплавов KF-AlF₃-Al₂O₃ в стационарном режиме. На фоне слабого влияния концентрации Al₂O₃ в расплаве на предельную плотность тока электровыделения алюминия (увеличение концентрации Al₂O₃ в расплаве с 4,2 до 5,5 мас.% приводит к увеличению предельной плотности тока выделения алюминия на 7-10 %) можно отметить, что увеличение температуры расплава с 670 до 750°C приводит к увеличению предельной плотности тока электровыделения в расплавах с [KF]/[AlF₃] = 1,3 моль/моль с 0,081 до 0,7 A/см² для вольфрамового и с 0,214 до 0,426 A/см² для стеклоуглеродного электрода. В расплавах с [KF]/[AlF₃] = 1,5 моль/моль увеличение температуры с 715 до 800°C приводит к увеличению предельной плотности тока электровыделения алюминия с 0,182 до 0,583 A/см² для вольфрамового и с 0,214 до 0,428 A/см² для стеклоуглеродного электрода.

Рисунок 2 – Стационарные поляризационные кривые на стеклоуглероде (A) и вольфраме (B) в расплаве KF-AlF₃-Al₂O₃ ([KF]/[AlF₃] = 1,3 моль/моль):

1 – температура 670°С, 4,2 мас.% Al₂O₃; *2* – температура 715°С, 4,9 мас.% Al₂O₃; *3* – температура 750°С, 5,5 мас.% Al₂O₃

Рисунок 3 – Стационарные поляризационные кривые на стеклоуглероде (*A*) и вольфраме (*B*) в расплаве KF-AlF₃-Al₂O₃ ([KF]/[AlF₃] = 1,5 моль/моль): *I* – температура 715°С, 5,7 мас.% Al₂O₃; *2* – температура 750°С, 6,9 мас.% Al₂O₃; *3* – температура 800°С, 8,4 мас.% Al₂O₃

Значительное влияние температуры и мольного отношения [KF]/[AlF₃] на предельные токи электровыделения алюминия хорошо согласуется с предположением о частичной солевой пассивации электрода твердожидким слоем проводящей соли.

Поскольку одной из основных примесей в промышленном глиноземе является оксид натрия, который накапливается в электролите в виде NaF было изучено его влияние на кинетику катодного процесса. На Рисунке 4 показано влияние добавки NaF на кинетику катодного электровыделения алюминия из расплавов KF-AlF₃-Al₂O₃ в стационарном режиме. Можно отметить, что добавка 10 мас.% NaF приводит к уменьшению поляризации катода и увеличению придельной плотности тока электровыделения алюминия с 0,6 до 0,7 A/cm^2 .

Рисунок 4 – Стационарные поляризационные кривые на вольфраме в расплавах с [KF+NaF]/[AlF₃] = 1,5 моль/моль при 800°С: *I* – KF-10 мас.%NaF-AlF₃, 6,75 мас.% Al₂O₃; *2* – KF-AlF₃, 8,4 мас.% Al₂O₃

Из проведенных стационарных поляризационных измерений следует, что наиболее существенное влияние на процесс электровосстановления алюминия в расплавах KF-AlF₃-Al₂O₃ оказывает мольное отношение [KF]/[AlF₃] и температура, а точнее перегрев расплава над его температурой ликвидуса. На основании измерений показано, что электролиз расплавов на основе системы KF-AlF₃-Al₂O₃ следует вести при катодной плотности тока не выше 0,35-0,60 A/cm² и температуре не ниже 725-750°C в зависимости от состава расплава (соотношения ([KF]+[NaF])/[AlF₃]).

Аналогичное влияние условий прослеживается из результатов хроновольтамперомерных измерений. Влияние температуры на кинетику электровыделения алюминия при электролизе исследуемых расплавов можно оценить из вольтамперных зависимостей, представленных на Рисунке 5.

Рисунок 5 – Хроновольтамперограммы, полученные на вольфраме в расплавах KF-AlF₃-Al₂O_{3 нас.} при разной температуре и скоростях развертки потенциала от 0,01 до 0,5 B/c

Как и в случае стационарных измерений, температура электролита оказывает значительное влияние на токи электровыделения алюминия. Увеличение температуры на 80-85 °C приводит к увеличению токов пиков в 2-3 раза.

Для оценки природы катодного пика, формирующегося на вольтамперных зависимостях были проанализированы его кинетические параметры в зависимости от скорости развертки потенциала (v). Потенциалы катодных пиков (E_{pc}) смещаются в отрицательную сторону при повышении величины ln(v), а зависимости плотностей токов пиков (j_{pc}) этих процессов от $v^{1/2}$ при малых скоростях развертки потенциала

отклоняются от линейности. Такая ситуация характерна для квазиобратимого процесса, осложненного последующими физико-химическими процессами, связанными с восстановлением состава прикатодного слоя после кратковременной поляризации. При высоких скоростях развертки упомянутые зависимости формально удовлетворяют критериям необратимого процесса.

В таблице 1 приведены параметры и результаты электролизных испытаний, выполненных в расплавах KF-AlF₃-Al₂O₃ и KF-NaF-AlF₃-Al₂O₃ на основании электрохимических измерений. Эксперименты проводили в электролизере на силу тока до 26 A с вертикальным расположением электродов: катодом служила предварительно алитированная вольфрамовая пластина, анодом – графит марки МПГ-8.

$i_{\rm k},$ A/cm ²	<i>U</i> , B	τ, мин	η _т , %	Примечания					
KF-AlF ₃ -Al ₂ O ₃ , [KF]/[AlF ₃] = 1,3 моль/моль при 750 °C									
0,2	3,2–3,5	240	55,2	Катод хорошо смочен алюминием. На дно					
0,4	3,4–3,7	240	80,2	электролизера капли алюминия					
0,6	4,9–6,1	120	50,1	Толстая серая корка (Al, K_3AlF_6 , $KAlF_4$, Al_2O_3) с					
0,8	5,2-8,3	90	<20	включениями капель алюминия на катоде.					
KF-NaF-AlF ₃ -Al ₂ O ₃ , ([KF]+[NaF])/[AlF ₃] = 1,5 моль/моль при 800 °C									
0,2	2,9–3,5	240	61,2						
0,4	3,3–3,6	240	80,9	Катод хорошо смочен алюминием. На дне					
0,6	4,8–5,9	240	82,2	электролизера каши алюминия					
0,8	5,1-8,2	90	<20	Толстая серая корка (Al, K ₃ AlF ₆ , KAlF ₄ , Al ₂ O ₃) с включениями капель алюминия на катоде.					

Таблица 1 – Параметры и результаты электролизных испытаний.

В ходе электролизных испытаний максимальная величина катодного выхода алюминия по току ($\eta_{\rm T}$ =80–82 %) была достигнута при катодной плотности тока 0,4–0,6 А/см². При этом катоды из вольфрама хорошо смачивались алюминием. При уменьшении катодной плотности тока до 0,2 А/см² наблюдали уменьшение выхода по току, что вызвано увеличением доли побочного растворения алюминия в расплаве. При катодной плотности тока выше 0,4–0,6 А/см² на катодах образуется толстая (до 1 см) серая корка. Несмотря на это, электролиз продолжает протекать при постепенном нарастании напряжения на электролизере. Рентгенограмма корки, полученной на катоде, указывает на то, что корка состоит из тугоплавких соединений Al₂O₃, K₃AlF₆,

пропитанных легкоплавкой фазой электролита $KAlF_4$ и восстановленным алюминием, благодаря которым сохраняется возможность проводить электролиз даже после формирования корки. В результате образования солевой корки на катоде возрастает напряжение и расход электроэнергии. Фактическая рабочая поверхность электрода уменьшается, что приводит к значительной поляризации катода и выделению щелочных металлов. Алюминий выделяется в виде мелких капель, которые плохо коагулируют между собой. Все это приводит к снижению выхода алюминия по току.

Результаты электролиза подтверждают полученные при стационарных поляризационных измерениях значения предельных плотностей тока электровыделения алюминия, превышение которых приводит к снижению выхода алюминия по току и образованию на катоде твердой солевой корки. Наблюдаемые на стационарных поляризационных кривых предельные токи обусловлены диффузионными затруднениями, связанными с замедленным отводом продуктов реакции от поверхности катода, его частичной солевой пассивацией и изменением его электрохимически активной поверхности. Это подтверждается тем, что наибольшее влияние на предельные плотности тока электровыделения алюминия оказывают состав электролита и его температура (перегрев над температурой ликвидуса расплава).

На основании электрохимических измерений и электролизных испытаний предложена схема катодного процесса при электровыделении алюминия из расплавов KF-AlF₃-Al₂O₃ и KF-NaF-AlF₃-Al₂O₃, включающая разряд оксидно-фторидных комплексных ионов алюминия, а при дальнейшей поляризации электрода - последующим разрядом фторидных комплексных ионов алюминия, например, по реакциям 1 и 2:

$$2Al_2OF_6^{2-} + 4AlF_4^{-} + 6e^{-} \rightarrow 2Al_{met} + Al_2O_2F_4^{2-} + 4AlF_6^{3-}$$
(1)

$$6AlF_4 + 6e^- \rightarrow 2Al_{met} + 4AlF_6^{3-}$$
(2)

Первичный разряд оксифторидных комплексов алюминия подтверждается увеличением катодных токов и уменьшением перенапряжения электровыделения алюминия при увеличении концентрации Al₂O₃ (Рисунки 1). Однако увеличение токов электровыделения алюминия на стационарных поляризационных кривых и хроновольтамперограммах непропорционально изменению концентрации Al₂O₃, что указывает на протекание процесса в смешанном кинетическом режиме.

В результате протекания реакции (1)–(2) и диффузионных затруднений по отводу продуктов реакции от поверхности электрода концентрация ионов AlF_6^{3-} в прикатодном слое увеличивается, а концентрация ионов AlF_4^- (мольная доля AlF_3) уменьшается. Поскольку в области исследуемых составов расплава и температур линии ликвидуса на фазовой диаграмме KF-AlF₃ (Рисунок 6, справа) имеют резко восходящий характер, то небольшое изменение состава расплава приводит к образованию на поверхности K₃AlF₆. электрода тугоплавкого соединения Кроме того, результате В электрохимической реакции (1) при больших плотностях тока равновесие между оксифторидными и фторидными ионами (реакция 3) в прикатодном слое электролита не успевает восстановится ввиду диффузионных затруднений по отводу продуктов реакции от поверхности электрода. Это также приводит к росту содержания Al₂O₃ в прикатодном слое расплава, а при повышении концентрации выше 3-4 мол.% – к резкому повышению температуры ликвидуса (Рисунок 6, слева) и выпадению на поверхности электрода тугоплавкого Al_2O_3 по реакции (4).

$$Al_2O_2F_4^{2-} + 2AlF_4^{-} = 2Al_2OF_6^{2-}$$
(3)

$$3Al_2O_2F_4^{2-} = 2Al_2O_3\downarrow + 2AlF_6^{3-}$$
 (4)

Рисунок 6 Температуры ликвидуса расплавов KF-AlF₃-Al₂O₃ (слева) и KF-AlF₃ (справа)

Согласно экспериментальным данным и предложенной схеме в первом приближении рассмотрены процессы массопереноса, протекающие в межэлектродном пространстве при электролитическом получении алюминия в легкоплавких оксиднофторидных расплавах. Сделан вывод о том, что причиной нарушения стабильного электролиза со стороны катодного процесса является изменение состава прикатодного слоя, приводящее к частичной блокировке поверхности катода оксидно-солевыми твердыми осадками с включениями восстановленного алюминия.

Во второй главе изучены кинетические закономерности совместного электровыделения алюминия и скандия из расплавов KF-AlF₃, LiF-CaF₂ с добавками NaF, Sc₂O₃ и ScF₃ при температуре 800 °C.

Поскольку потенциалы электровыделения скандия и калия близки исследование катодного процесса проводили на химически стойком по отношению к калию вольфрамовом катоде в расплавах 1,5KF-AlF₃ (0,1 мас.% Al₂O₃) и 1,5[KF-(10 мас.% NaF)]-AlF₃ (0,1 мас.% Al₂O₃) при 800°C. Представленные расплавы выбраны для измерений, поскольку обладают наибольшими предельными токами электровыделения алюминия и большой растворимостью Al₂O₃ и Sc₂O₃.

На рисунке 7 приведены хроновольтамперограммы, полученные на вольфраме в расплаве KF-AlF₃ ([KF]/[AlF₃] = 1,5 моль/моль, 0,1 мас.% Al₂O₃) с добавкой 3,5 и 4,9 мас.% Sc₂O₃ при температуре 800°С и скорости развертки потенциала 0,1 В/с. При потенциале -0,1 В начинается пик электровыделения алюминия (Al) с максимумом при потенциале -0,45 В. При введении Sc₂O₃ в расплав, не содержащий ионов скандия, на хроновольтамперограммах появляется дополнительный пик совместного электровыделения алюминия и скандия (Al+Sc) при потенциале -0,70 В. Начало пика (Al+Sc) при потенциале -0,5 В близко к термодинамическому значению разности потенциалов между скандием и алюминием. Поскольку потенциал электровыделения К близок к потенциалу электровыделения Sc можно предположить, что К выделяется совместно со Sc и испаряется или потребляется на восстановление AlF₃, ScF₃, что подтверждается термодинамическими расчетами [52]. Волна электровыделения калия (К) в виде самостоятельной фазы наблюдается при потенциале около -1,1 В. Вероятно часть выделяющегося на катоде калия образует интерметаллидные соединения со скандием [37, 38]. При развертке потенциала в обратную сторону пик анодного растворения (**K**') практически отсутствует. Добавка 10 мас.% NaF в расплав практически не сказывается на пиках электровыделения Al и Al со Sc (Рисунок 8) при скорости развертки потенциала 0,1 В/с.

В условиях стационарной поляризации добавка Sc_2O_3 в расплав 1,5KF-AlF₃ (0,1 мас.% Al₂O₃) при 800°С приводит к увеличению предельных плотностей тока электровыделения Al со Sc с 0,6 A/cm² в расплаве без добавок Sc_2O_3 до 1,23 A/cm² после

добавки 4,9 мас.% Sc₂O₃ (Рисунок 9). Это объясняется тем, что скандий выделяется совместно с алюминием в виде твердых фаз интерметаллидного соединения Al₃Sc, что приводит к увеличению площади электрода и, соответственно, к увеличению тока, протекающего через электрод.

Рисунок 7 – XBAM, полученные на вольфраме в расплаве KF-AlF₃ ([KF]/[AlF₃] = 1,5 моль/моль) с разным содержанием Sc₂O₃ при 800°С и скорости развертки потенциала 0,1 B/c

Рисунок 8 – ХВАМ на вольфраме в расплавах с мольным отношением [KF+NaF]/[AlF₃] = 1,5 моль/моль, насыщенных по Sc₂O₃ при 800 °C и скорости развертки потенциала 0,1 В/с: 1 – KF-AlF₃-Sc₂O₃; 2 – KF-(10 мас. %)NaF-AlF₃-Sc₂O₃.

Рисунок 9 – Стационарные поляризационные кривые на вольфраме в расплаве 1,5KF-AlF₃-Sc₂O₃ при 800°C: Содержание Sc₂O₃, мас.%: 1 - 0; 2 - 3,5; 3 - 4,9

Рисунок 10 – Стационарные поляризационные кривые на вольфраме в расплаве KF-AlF₃-Sc₂O_{3нас.} и KF-(10 мас.%)NaF-AlF₃-Sc₂O_{3нас.} при [KF+NaF]/[AlF₃] = 1,5 моль/моль и 800°C

Дальнейшая поляризация электрода приводит к частичной его пассивации и к появлению площадки предельного тока совместного электровыделеня Al и Sc, также как в случае с электровыделением Al.

Добавка 10 мас.% NaF в расплав KF-AlF₃ ([KF]/[AlF₃] = 1,5 моль/моль при 800°C приводит к увеличению предельных плотностей тока электровыделения алюминия и скандия с 1,23 до 1,31 A/см² и к уменьшению катодного перенапряжения (Рисунок 10).

Полученные результаты вольтамперных и стационарных поляризационных измерений были использованы при выборе плотностей токов электровыделения алюминия и скандия при электролизных испытаниях (см. таблицу 2). Как и в главе 1, электролиз вели в электролизерах на силу тока до 26 А с вертикальным расположением электродов: катоды – предварительно алитированные вольфрамовые пластины; аноды – пластины из графита марки МПГ-8. При всех выбранных плотностях тока электролиз протекал стабильно. На катоде формировался твердый, рыхлый осадок с частично металлическим блеском, пропитанный электролитом (Рисунок 11).

<i>T</i> , °C	$i_{\rm k},$ A/cm ²	<i>U</i> , B	τ, мин	$\eta^*_{Al/Sc}$, %	Примечания				
KF-AlF ₃ -Sc ₂ O ₃ [KF]/[AlF ₃] = 1,5 моль/моль									
800	0,6	5,4–4,9	260	65,2 Al, 14,5 Sc	твердый осадок на катоде				
800	0,55	4,4–4,0	,4-4,0 320 62,3 10,8		твердый осадок на катоде				
750	0,4	3,5–3,3	480	60,3 Al, 13,5 Sc	твердый осадок на катоде				
КF-(10 мас.% NaF)-AlF ₃ -Sc ₂ O ₃ ([KF+NaF]/[AlF ₃] = 1,5 моль/моль)									
800	0,7	6,5–4,9	200	60,9 Al 12,2 Sc	твердый осадок на катоде				
* $\eta_{Al} = \frac{m_{Al} \times 100}{I \times \tau \times k_{Al}}$; $\eta_{Sc} = \frac{m_{Sc} \times 100}{I \times \tau \times k_{Sc}}$, где: η – доля тока пошедшая на восстановление Al									
или Sc при их совместном электровыделении; I – ток электролиза, A; m –масса									
полученного металла, г; k – электрохимический эквивалент, г/А·ч.									

Таблица 2 – Параметры и результаты электролизных испытаний

По результатам рентгенофазового анализа осадок представлял собой фазы интерметаллидного соединения Al₃Sc с включениями электролита: KAlF₄, K₃AlF₆, K₂AlF₅, KAl₄F₁₃ и ScOF. После электролиза катодный продукт растворяли в жидком

алюминии под слоем солевого флюса при 900°С для определения массы полученных Al и Sc и отделения их от электролита.

Рисунок 11 – Катодный осадок полученный при электролизе расплава 1,5 KF-AlF₃-Sc₂O₃ и 1,5 [KF-(10 мас.%) NaF]-AlF₃-Sc₂O₃

В результате измерений и электролизных испытаний предложен новый подход для производства лигатур Al-Sc, включающий электровыделение алюминия и скандия при электролизе фторидных или оксидно-фторидных расплавов и последующее растворение катодного осадка в жидком алюминии.

В третьей главе представлены результаты исследований по синтезу лигатур Al-Sc алюмотермическим и электролитическим способами в расплаве KF-NaF-AlF₃. Проанализировано влияние состава расплава и условий технологического процесса на извлечение скандия из его оксида в алюминий. Описаны результаты длительных экспериментов по электрохимическому получению лигатур Al-Sc с содержанием скандия до 2,5 мас.%. Представлены данные, касающиеся элементного состава и структуры полученных лигатур. Приведена сравнительная оценка технико-экономических показателей предложенного способа получения лигатуры Al-Sc по сравнению со способом алюмотермического синтеза под слоем солевого флюса.

При электролизе расплава KF-NaF-AlF₃-Sc₂O₃-Al₂O₃ (([KF]+[NaF])/[AlF₃] = 1,5 моль/моль) с алюминиевым катодом протекают параллельные процессы алюмотермического восстановления Sc₂O₃:

$$2A1 + Sc_2O_3 = 2Sc_{(BA1)} + Al_2O_3$$
(5)

$$8Al + Sc_2O_3 = 2Al_3Sc_{(BAl)} + Al_2O_3$$
(6)

и электролитического разложения оксидов по суммарным реакциям:

$$Sc_2O_3 + 2C = 2Sc_{(BAl)} + CO + CO_2$$
 (7)

$$Al_2O_3 + 2C = 2Al + CO + CO_2.$$
 (8)

На Рисунке 12 показано влияние начального содержания Sc_2O_3 в расплаве 1,5 [KF-(10 мас.%) NaF]-AlF₃-Sc₂O₃ при 800 °C на содержание Sc в получаемых лигатурах при алюмотермическом синтезе лигатур Al-Sc. Из представленных зависимостей видно, что содержание скандия в алюминии при увеличении концентрации оксида скандия в расплаве с 1 до 6 мас.% увеличивается нелинейно (Рисунок 12). Это обусловлено уменьшением растворимости Al₂O₃ (который является продуктом алюмотермических реакций 5 и 6) при увеличении начальной концентрации Sc₂O₃ в расплаве. При этом извлечение скандия из растворенного в расплаве Sc₂O₃ в алюминий уменьшается с 55 до 24 %. Максимальная концентрация скандия в алюминии достигает 0,94 мас.%, что не соответствует ГОСТ Р 53777–2010 «Лигатуры алюминиевые», где минимальная концентрация скандия в лигатуре должна составлять 1,7 мас.%.

Таким образом, можно утверждать, что извлечение скандия из его оксида по реакции (5) и (6) определяется растворимостью продукта реакции (Al_2O_3) в исследуемых расплавах и для увеличения извлечения скандия из Sc_2O_3 необходимо использовать электролиз для разложения образующегося Al_2O_3 по реакции (8).

Рисунок 12 – Влияние заданного содержания Sc_2O_3 в расплаве 1.5 [KF-(10 мас.% NaF]-AlF₃-Sc₂O₃ на извлечение и содержание Sc в получаемых лигатурах Al-Sc при 800 °C

Для получения лигатур Al-Sc с высоким содержанием и извлечением скандия был выполнен электролиз исследуемых расплава KF-NaF-AlF₃-Sc₂O₃, включающий

периодическую загрузку алюминия и Sc_2O_3 в электролизер, а также выгрузку из него лигатуры Al-Sc. Электролиз вели в графитовых тиглях с жидким алюминиевым катодом на дне и графитовым анодом сверху. Токоподвод к катоду осуществляли через дно графитового стакана. Предварительно для определения периодичности выгрузки лигатуры и загрузки алюминия с Sc_2O_3 была проведена серия электролизных испытаний при катодной плотности тока от 0,5 до 1 А/см² с разовой загрузкой 4 и 6 мас.% Sc_2O_3 .

На Рисунке 13 приведен пример изменения напряжения на электролизере (U, B) в ходе электролиза расплава 1,5 [KF-(10 мас.% NaF]-AlF₃-Sc₂O₃ с разовой добавкой 6 мас.% Sc₂O₃, при плотности тока 0,63 A/cm², а на Рисунке 14 – содержание скандия в лигатуре и расплаве. На зависимости изменения напряжения (U, B) наблюдаются спады значений до величин ~ 1,35-1,53 B связанные с отключением тока для отбора проб. В ходе электролиза содержание скандия в сплаве увеличивается, а содержание Sc₂O₃ в расплаве – уменьшается (Рисунок 14).

5 2.5 Sc_2O_3 в расплаве, мас. % 2 4 3 2 0,5 0 1 0 100 50 150 200 250 300 время, мин

Рисунок 13 – Изменение напряжения электролиза расплава 1,5 [KF-(10 мас.% NaF]-AlF₃-Sc₂O₃ с 6 мас.% Sc₂O₃, при 800 °C и $i_k = 0.63$ A/см²

Рисунок 14 – Изменение содержания Sc в Al (
) и Sc₂O₃ в расплаве (
) в ходе электролиза расплава 1,5 [KF-(10 мас.% NaF]-AlF₃-Sc₂O₃ с 6 мас.% Sc₂O₃, при 800 °C и $i_k = 0.63$ A/см²

По результатам проведенных электролизных испытаний можно сделать вывод о существенном влиянии плотности тока электролиза на извлечение скандия из его оксида в алюминий. Так при алюмотермическом синтезе лигатуры Al-Sc в расплаве 1,5 [KF-(10 мас.% NaF]-AlF₃- 6 мас.% Sc₂O₃ извлечение скандия в алюминий составляет 24 %, а содержание скандия в алюминии достигает 0,92 мас.% (Рисунок 12). При

электролизе того же расплава извлечение скандия в алюминий увеличивается до 56,2 %, а концентрация Sc в A1 до 2,2 мас. % при плотности тока 0,62 A/cm².

На основании результатов полученных в лабораторных испытаниях была исследована возможность непрерывного электролиза расплава с периодической выгрузкой получаемой лигатуры в укрупнённом лабораторном электролизере на 100 A (Рисунок 15) при катодной плотности тока 0,65 A/cm². Катодом служил расплавленный алюминий на дне графитового стакана диаметром 140 мм и высотой 260 мм. В качестве анода использовался графит марки МПГ-8. В ходе электролиза производили выгрузку лигатуры Al-Sc и загрузку чистого алюминия и Sc_2O_3 , а также измеряли уровни расплава и жидкого катода, температуру расплава и напряжение между анодом и катодом.

Рисунок 15 – Фотографии укрупненного лабораторного электролизера для непрерывного электролитического получения лигатуры Al-Sc

В результате испытаний было получено 57,9 кг лигатуры Al-Sc с содержанием с содержанием Sc от 1,5 до 2.5 мас.% в зависимости от периодичности выгрузки готовой лигатуры. Извлечение скандия из его оксида в алюминий составило 90,45 %. Доля тока, пошедшая на восстановление скандия, составила 47,66 %, на восстановление алюминия 21,54 %, суммарно выход по току составил 69,2 %.

Исследован элементный состав и структура полученных в работе лигатур (Рисунок 16). Скандий в матрице алюминия распределен равномерно, при этом на поверхности лигатуры встречаются фазы интерметаллидных соединений Al-Sc размером до 50 мкм.

В заключении приведены научно-технические основы нового способа производства лигатур Al-Sc, приведен сравнительный анализ технико-экономических показателей существующего алюмотермического и предложенного способа получения лигатуры Al-Sc, оценена экономическая эффективность последнего.

Рисунок 16 – Микрофотографии и карты распределения скандия в образцах Al-Sc c содержанием 0,5 и 2,0 мас. % скандия, полученных при электролизе расплава KF-NaF-AlF₃ с подгрузкой Sc₂O₃ при 800–820 °C

ЗАКЛЮЧЕНИЕ

1. Установлены закономерности электровыделения алюминия из легкоплавких расплавов KF-AlF₃-Al₂O₃ KF-NaF-AlF₃-Al₂O₃. Определено влияние материала подложки (вольфрам, стеклоуглерод), состава расплава (содержание Al₂O₃ от 0,1 мас.% до насыщения), мольное отношение [KF+NaF]/[AlF₃] = 1,3 и 1,5 моль/моль) и температуры (670-800 C) на кинетику электровыделения алюминия в стационарном и нестационарном режиме.

2. Показано, что наибольшее влияние на кинетику электровыделения алюминия из расплавов KF-AlF₃-Al₂O₃ оказывает перегрев расплава над его температурой ликвидуса. В расплавах с [KF]/[AlF₃] = 1,5 увеличение температуры с 715°C до 800°C приводит к увеличению предельной плотности тока электровыделения алюминия с 0,18 до 0,58 A/cm² для вольфрамового электрода, а добавка NaF увеличивает ее до 0,70 A/cm² при 800 °C.

3. Проведены электролизные испытания в расплавах KF-AlF₃-Al₂O₃ и KF-NaF-AlF₃-Al₂O₃ при варьировании катодной плотности тока и состава расплава. Показано, что при электролизе исследуемых расплавов при катодной плотности тока выше 0,4-0,6 A/cm² в зависимости от состава и температуры электролита происходит образование на катоде твердой оксидно-солевой смеси (частичная солевая пассивация катода).

4. Представлены закономерности механизма катодного процесса при электровыделении алюминия из расплавов KF-AlF₃-Al₂O₃ и KF-NaF-AlF₃-Al₂O₃,

включающие разряд окси-фторидных ионов с образованием восстановленного алюминия. Рассмотрены процессы, протекающие в прикатодном пространстве при электролитическом получении алюминия в легкоплавких оксидно-фторидных расплавах и сделан вывод о том, что причиной нарушения стабильного электролиза со стороны катодного процесса является изменение состава прикатодного слоя электролита, приводящее к частичной блокировке поверхности катода оксидно-солевыми твердыми осадками с включениями восстановленного алюминия.

5. Установлены закономерности электровыделения алюминия и скандия из фторидных и оксидно-фторидных расплавов KF-AlF₃-Sc₂O₃, KF-NaF-AlF₃-Sc₂O₃ и LiF-CaF₂-ScF₃. Показано, что появление в расплавах Sc₂O₃ приводит к увеличению катодных токов и появлению на вольтамперных зависимостях дополнительных пиков совместного электровыделения алюминия и скандия при сохранении закономерностей исследуемого процесса. В расплаве LiF-CaF₂-ScF₃ показано, что разряд Sc на 0,44 В отрицательнее алюминия, что согласуется с термодинамическими расчетами. В стационарных условиях появление и увеличение содержания Sc₂O₃ в расплаве KF-AlF₃ до 4,9 мас.% приводит к увеличению катодного тока совместного электровыделения алюминия и скандия с 0,6 до 1,23 A/cm² при температуре 800 °C. Добавка 10 мас.% NaF в расплав KF-AlF₃ ([KF]/[AlF₃] = 1,5 моль/моль при 800°C приводит к увеличению предельных плотностей тока электровыделения алюминия и скандия с 1,23 до 1,31 A/cm² и к уменьшению поляризации электрода. Предельные токи совместного электровыделения Al и Sc связаны с частичной солевой пассивацией катода.

6. Проведены испытания по электроосаждению твердых осадков Al-Sc из KF-NaF-AlF₃-Al₂O₃-Sc₂O₃ расплавов $KF-AlF_3-Al_2O_3-Sc_2O_3$ В электролизере с вертикальным вольфрамовым катодом и показано, что преимущественным катодным продуктом является соединение Al₃Sc. Предложен новый подход для производства лигатур Al-Sc, включающий электровыделение алюминия и скандия из Al_2O_3 и Sc_2O_3 на твердом смачиваемом катоде при электролизе оксидно-фторидных расплавов и последующее растворение полученного катодного осадка в жидком алюминии. Оценены доли тока на восстановления алюминия И скандия при ИХ совместном электровыделении, которые достигают 65,2 % и 14,5 %, соответственно.

7. Установлены закономерности алюмотермического синтеза лигатур Al-Sc в расплаве KF-NaF-AlF₃ с добавками Sc₂O₃. Определено влияние основных параметров

(длительность синтеза, содержание Sc_2O_3 в расплаве) на извлечение скандия из его оксида и содержание Sc в Al. Максимальное содержание скандия в полученных лигатурах Al-Sc составляет 0,94 мас.% при степени извлечении Sc в лигатуру 17 %.

8. Показано, что использование жидкого алюминиевого катода при электролизе расплава KF-NaF-AlF₃, содержащего от 4,0 до 6,0 мас.% Sc₂O₃, позволяет получать лигатуры концентрацией скандия до 2,5 мас.%, благодаря с электролитическому разложению оксидов Al_2O_3 и Sc_2O_3 , а степень извлечения Sc достигает 92 % в условиях непрерывного электролиза. Испытания в укрупненном лабораторном электролизере на силу тока 100 А подтвердили такую возможность.

9. Ha основе комплекса поляризационных измерений, лабораторного электролиза и анализа лигатур, предложена новая технология получения лигатур Al-Sc электролизом легкоплавких оксидно-фторидных расплавов на жидкометаллическом алюминиевом катоде и разработана принципиальная и аппаратурная схема её реализации. Проведена оценка экономической эффективности разработанной технологии и себестоимости лигатуры, полученной электролизом расплава 1,5 [KF-(10 мас.% NaF]-AlF₃-Sc₂O₃ которая примерно в четыре раза меньше её рыночной стоимости.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Shtefanyuk Yu. Production of Al-Sc alloy by electrolysis of cryolite-scandium oxide melts / Yu. Shtefanyuk, V. Mann, V. Pingin, D. Vinogradov, Yu. Zaikov, O. Tkacheva, A. Nikolaev, A. Suzdaltsev // Light Metals. – 2015. – P. 589-593.

2. Nikolaev A.Yu. Cathode process at the electrolysis of KF-AlF₃-Al₂O₃ melts and suspensions / A.Yu. Nikolaev, A.V. Suzdaltsev, P.V. Polyakov, Yu.P. Zaikov // Journal of The Electrochemical Society. – 2017. – V. 164(8). – P. H5315-H5321.

3. Николаев А.Ю. Электролиз алюминия в расплавах и суспензиях KF-AlF₃-Al₂O₃ / А.Ю. Николаев, А.С. Ясинский, А.В. Суздальцев, П.В. Поляков, Ю.П. Зайков // Расплавы. – 2017. – № 3. – С. 205-213.

4. Николаев А.Ю. Вольтамперометрия в расплаве и суспензиях KF-AlF₃-Al₂O₃ / А.Ю. Николаев, А.С. Ясинский, А.В. Суздальцев, П.В. Поляков, Ю.П. Зайков // Расплавы. – 2017. – № 3. – С. 214-225.

5. Suzdaltsev A.V. Modern ways for obtaining Al-Sc master alloys: A review / A.V. Suzdaltsev, A.Yu. Nikolaev, Yu.P. Zaikov // Tsvetnye Metally. – 2018. – №1. – P. 69-73.

6. Suzdaltsev A.V. Extraction of scandium and zirconium from their oxides during the electrolysis of oxide–fluoride melts / A.V. Suzdaltsev, A.A. Filatov, A.Yu. Nikolaev, A.A. Pankratov, N.G. Molchanova, Yu.P. Zaikov // Russian Metallurgy (Metally). – 2018, – V. 2018. – №2. – P. 133-138.

7. Николаев А.Ю. Электровыделение алюминия и скандия из фторидных и оксидно-фторидных расплавов / А.Ю. Николаев, А.В. Суздальцев, Ю.П. Зайков // Бутлеровские сообщения. – 2018. – Т. 56. – № 10. – С. 75-83.

8. Nikolaev A.Yu., Electrowinning of aluminium and scandium from KF-AlF₃-Sc₂O₃ melts for the synthesis of Al-Sc master alloys / A.Yu. Nikolaev, A.V. Suzdaltsev, Yu.P. Zaikov // Journal of The Electrochemical Society. -2019. - V. 166(8). - P. D252-D257.

9. Nikolaev A.Yu. Cathode process in the KF-AlF₃-Al₂O₃ melts / A.Yu. Nikolaev, A.V. Suzdaltsev, Yu.P. Zaikov // Journal of the Electrochemical Society. – 2019. – V. 166(15). –P. D784-D791.

10. Николаев А.Ю. Новый способ синтеза лигатур Al-Sc в оксидно-фторидных и фторидных расплавах / А.Ю. Николаев, А.В. Суздальцев, Ю.П. Зайков // Расплавы. – 2020. – № 2. – С. 155-165.

11. Suzdaltsev A.V. Review-Synthesis of aluminum master alloys in oxide-fluoride melts: A review / A.V. Suzdaltsev, P.S. Pershin, A.A. Filatov, A.Yu. Nikolaev, Yu.P. Zaikov // Journal of the Electrochemical Society. – 2020. – V. 167(10). – P. 102503.

Патентные документы:

Патент 2593246С1 РФ. Способ получения лигатуры алюминий-скандий / Манн
 В.Х., Пингин В.В., Виноградов Д.А., Штефанюк Ю.М., Зайков Ю.П., Суздальцев А.В.,
 Николаев А.Ю., Ткачева О.Ю. // – Заявл. 22.04.2015. – Опубл. 10.08.2016. – Бюл. №22.

2. Патент 2599312С1 РФ. Электролитический способ непрерывного получения алюминиевого сплава со скандием / Зайков Ю.П., Суздальцев А.В., Николаев А.Ю.,

Ткачева О.Ю., Виноградов Д.А., Пингин В.В., Штефанюк Ю.М., Манн В.Х. // – Заявл. 05.03.2015. – Опубл. 10.10.2016, – Бюл. №28.

3. Международная заявка WO2016/171584A1. Способ получения лигатуры алюминий-скандий / Манн В.Х., Пингин В.В., Виноградов Д.А., Штефанюк Ю.М., Зайков Ю.П., Суздальцев А.В., Николаев А.Ю., Ткачева О.Ю. // – Заявл. 14.03.2016. – Опубл. 27.10.2016.

4. Патент 2629418 РФ. Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия / Зайков Ю.П., Суздальцев А.В., Николаев А.Ю., Ткачева О.Ю., Виноградов Д.А., Пингин В.В., Штефанюк Ю.М., Манн В.Х. // – Заявл. 07.09.2016. – Опубл. 29.08.2017, – Бюл. № 25.

5. Патент 2716727 РФ. Электролитический способ получения лигатур алюминия из оксидного сырья / Суздальцев А.В., Николаев А.Ю., Филатов А.А., Першин П.С., Зайков Ю.П. // – Заявл. 16.08.2019. – Опубл. 16.03.2020, – Бюл. № 8.

СПИСОК ЛИТЕРАТУРЫ

Liu, D. Electrochemical behavior of graphite in KF–AlF₃-based melt with low cryolite ratio
 / D. Liu, Zh. Yang, W. Li // Journal of the Electrochemical Society. – 2010. – V. 157(7). – P. D417–D421.

2. Liu D. Cathodic behavior of graphite in KF-AlF3-based melts with various cryolite ratios /
D. Liu, Zh. Yang, W. Li, S. Wang, Sh. Wang // J. Solid State Electrochem. – 2011. – № 15, –
P. 615–621.

3. Pershin P. Synthesis of silumins in KF-AlF₃-SiO₂ melt / P. Pershin, A. Suzdaltsev, Yu. Zaikov // Journal of the Electrochemical Society. -2016. -V.163(5). -P. D167-D170.

4. Liu D. Electrochemical intercalation of potassium into graphite in KF melt / D. Liu, Zh. Yang, W. Li, Sh. Qiu, Y. Luo // Electrochimica Acta. – 2010, – V. 55. – P. 1013–1018.

5. Liu, Q. Preparing aluminium-scandium inter-alloys during reduction process in KF-AlF₃- Sc_2O_3 melts / Q. Liu, J. Xue, J. Zhu, Ch. Guan // Light metals. – 2012. – P. 685-689.

6. Liu, Q. Processing Al-Sc alloys at liquid aluminum cathode in KF-AlF₃ molten salt / Q. Liu,

J. Xue, J. Zhu, Y. Qian, L. Feng // ECS Transactions. – 2012. – V. 50 – № 11. – P. 483–489.