Главная Новые поступления Описание Шлюз Z39.50

Базы данных


Труды сотрудников Института теплофизики УрО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Vershinin, S. V.$<.>)
Общее количество найденных документов : 38
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-38 
1.

Вид документа : Статья из журнала
Шифр издания : 53/S 71
Автор(ы) : Maydanik Yu. F., Fershtater Y. G., Vershinin S. V., Pastukhov V. G., Goncharov K.
Заглавие : Some results of loop heat pipes development, tests and application in engineering
Место публикации : Proceedings of 5th International Heat Pipe Symposium (Melbourne, Australia, Nov. 17-20, 1996). - Melbourne, 1996. - С. 406-412
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): труба контурная--контурная труба--труба тепловая--тепловая труба
Найти похожие

2.

Вид документа : Статья из журнала
Шифр издания : 53/L 88
Автор(ы) : Maydanik Yu. F., Vershinin S. V., Pastukhov V. G., Gluck D., Gerhard C.
Заглавие : Loop heat pipes and evaporators with advanced characteristics
Место публикации : Proceedings of the CPL-98 International Workshop on Capillary Pumped Two-Phase Loops (Los Angeles, USA, March 2-3, 1998). - С. 2. 4-1-2. 4-11
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): труба контурная--контурная труба--труба тепловая--тепловая труба--испарители
Найти похожие

3.

Вид документа :
Шифр издания : 53/M 73
Автор(ы) : Pastukhov V. G., Maydanik Yu. F., Vershinin S. V., Korukov M. A.
Заглавие : Miniature loop heat pipes for electronics cooling
Место публикации : Applied Thermal Engineering : 12th International Heat Pipe Conference Location, Russia, 19-24 may 2002 . - 2003. - Vol.23, № 9. - С. 1125-1135
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): miniature loop heat pipe--cpu--thermal resistance
Аннотация: The paper is devoted to the development of miniature loop heat pipes (mLHPs) with a nominal capacity of 25-30 W and a heat-transfer distance up to 250 mm intended for cooling electronics components and CPU of mobile PC. It gives the results of investigating several prototypes of mLHPs incorporated into remote heat exchanger (RHE) systems in different conditions. It has been established that in the nominal range of heat loads orientation does not practically affect the mLHPs operating characteristics. Under air cooling the total thermal resistance of such a system is 1.7-4.0degreesC/W and depends strongly on the cooling conditions and the radiator efficiency. In this case the mLHP's own thermal resistance is in the limits from 0.3 to 1.2degreesC/W, and the maximum capacity reaches 80-120 BT. The obtained results make it possible to regard mLHPs as quite promising devices for RHE systems providing thermal regimes for electronics components and personal computers. (C) 2003 Elsevier Science Ltd. All rights reserved
Найти похожие

4.

Вид документа :
Шифр издания : 53/H 65
Автор(ы) : North M. T., Sarraf D. B., Rosenfeld J. H., Maydanik Yu. F., Vershinin S. V.
Заглавие : High heat flux loop heat pipes
Место публикации : 6th European Symposium on Space Environmental Control Systems: Noordwijk, Netherlands, 20-22 may 1997 . - 1997. - Vol. 400. - С. 371-376
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): loop heat pipes --power loads--gravitational heads
Аннотация: Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and gravitational heads. While recent transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m(2). This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m(2) This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m(2).K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser
Найти похожие

5.

Вид документа :
Шифр издания : 53/T 44
Автор(ы) : Bienert W. B., Wolf D. A., Nikitkin M. N., Maydanik Yu. F., Fershtater Y. G., Vershinin S. V., Gottschlich J. M.
Заглавие : The proof-of-feasibility of multiple evaporator loop heat pipes
Место публикации : 6th European Symposium on Space Environmental Control Systems: Noordwijk, Netherlands, 20-22 may 1997 . - 1997. - Vol.400. - С. 393-398
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): loop heat pipes --thermal control --multiple thermal interface
Аннотация: This paper presents results that demonstrate the proof-of-feasibility of multiple evaporator Loop Heat Pipes (LHP). It was demonstrated that a multiple evaporator LHP can successfully operate as a thermal control system component. A breadboard LHP with multiple evaporators (two) that retained the reliable self starting behavior of the single thermal interface LHP was developed. Program efforts were concentrated on a two pump system and investigated the performance of the dual evaporator LHP. Analytical predictons and experimental test data are compared, and important issues are discussed that will be a baseline for continued development of multiple thermal interface LHPs. All of the conclusions are based on test results, analytic modeling and the correlation of the two. Although a mathematical model that predicts the multiple evaporator LHP behavior was developed, the primary focus of the program was the development, fabrication, and test of a breadboard multi-evaporator LHP. The program clearly demonstrated that multi-evaporator LHPs are feasible and merit further development as a viable thermal control components
Найти похожие

6.

Вид документа :
Шифр издания : 53/H 65
Автор(ы) : North M. T., Sarraf D. B., Rosenfeld J. H., Maydanik Yu. F., Vershinin S. V.
Заглавие : High heat flux loop heat pipes
Место публикации : SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM (STAIF-97), PTS 1-3: 1ST CONFERENCE ON FUTURE SCIENCE & EARTH SCIENCE MISSIONS; 1ST CONFERENCE ON SYNERGISTIC POWER & PROPULSION SYSTEMS TECHNOLOGY; 1ST CONFERENCE ON APPLICATIONS OF THERMOPHYSICS IN MICROGRAVITY; 2ND CONFERENCE ON COMMERCIAL DEVELOPMENT OF SPACE; - 2ND CONFERENCE ON NEXT GENERATION LAUNCH SYSTEMS; 14TH SYMPOSIUM ON SPACE NUCLEAR POWER AND PROPULSION, ALBUQUERQUE, 26-30 JAN, 1997 . - 1997. - Vol.387. - С. 561-566
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): loop heat pipes --thermal power loads--vapor flow losses
Аннотация: Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m(2). This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m(2). This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m(2) K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser
Найти похожие

7.

Вид документа :
Шифр издания : 53/V 50
Автор(ы) : Vershinin S. V., Fershtater Y. G., Maydanik Yu. F.
Заглавие : Effect of the thermal contact resistance on heat-transfer during boiling from fine porous capillary structures
Место публикации : High Temperature. - 1992. - Vol.30, №4. - С. 668-673
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): heat trahsfer--vapor formation
Аннотация: The dependence of the heat transfer rate on the geometry of vapor channels is investigated analytically and experimentally with a consideration of the thermal contact resistance during vapor formation in fine porous structures for carrying away the vapor. It is shown that the larger the contact resistance, the greater the distance between the channels must be to maximize the values of the heat-transfer coefficients
Найти похожие

8.

Вид документа :
Шифр издания : 53/L 88
Автор(ы) : Maydanik Yu. F., Vershinin S. V., Pastukhov V. G., Fried S.
Заглавие : Loop Heat Pipes for Cooling Systems of Servers
Место публикации : IEEE Transactions on Components and Packaging Technologies. - 2010. - Vol.33, №2. - С. 416-423
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): heat-transfer device--lhps --opteron cpus
Аннотация: Loop heat pipes (LHPs) are exceptionally efficient heat-transfer devices that employ a closed loop evaporation-condensation cycle that can be used to cool densely packed electronic systems that reject large quantities of heat, including computers and their central processing units (CPUs). Tests were carried out on miniature ammonia LHPs with a CPU thermal simulator using different ways of condenser cooling. The possibility of maintaining the cooled object temperatures between 40°C and 70°C with heat load changing from 100 to 320 W was demonstrated. Subsequent tests of these devices in a 1U computer with dual core advanced micro devices Opteron CPUs, dissipating between 95 and 120 W, have confirmed the advantages and heat transfer efficiency of LHP-based cooling systems used to cool CPU in 1U chassis
Найти похожие

9.

Вид документа :
Шифр издания : 53/S 82
Автор(ы) : Becker S., Vershinin S. V., Sartre V., Laurien E., Bonjour J., Maydanik Yu. F.
Заглавие : Steady state operation of a copper–water LHP with a flat-oval evaporator
Место публикации : Applied Thermal Engineering. - 2011. - Vol.31, №5. - С. 686-695
Примечания : Библиогр.: с. 695 (24 ref.)
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): loop heat pipe--heat trahsfer--experimental study
Аннотация: In order to dissipate the heat generated by electronic boxes in avionic systems, a copper–water LHP with a flat-oval evaporator was fabricated and tested at steady state. The LHP consists of a flat shaped evaporator, 7 mm thick, including compensation chamber with attached heat exchanger. The condenser is cooled by forced convection of liquid. The variable parameters are the heat sink and ambient temperatures (20 and 55 °C), the orientation (−90° to +90° in two perpendicular planes) and the power input (0–100 W). Evaporator wall temperatures are higher when the evaporator is placed above the condenser. For heat sink and ambient temperature of 20 °C the evaporator wall temperature does not vary much with heat load for all measured elevations. But it fluctuates at heat sink and ambient temperature equal to 55 °C when the evaporator is placed below the condenser. The LHP total thermal resistance is governed by the condenser resistance. It decreases with increasing heat load, whatever the operating conditions, because the part of the condenser internal surface area used for condensation increases too. A minimum thermal resistance of 0.2 K/W was obtained. The maximum thermal resistance was 2.7 K/W
\\\\expert2\\NBO\\Applied Thermal Engineering\\2011, v. 31, p.686.pdf
Найти похожие

10.

Вид документа :
Шифр издания : 53/I-70
Автор(ы) : Maydanik Yu. F., Vershinin S. V., Chernysheva M., Yushakova S.
Заглавие : Investigation of a compact copper–water loop heap pipe with a flat evaporator
Место публикации : Applied Thermal Engineering. - 2011. - Vol.31, №16. - С. 3533-3541
Примечания : Библиогр.: с. 3541 (22 ref.)
ББК : 53
Предметные рубрики: ФИЗИКА
Ключевые слова (''Своб.индексиров.''): electronics cooling--loop heat pipe--flat–oval evaporator
Аннотация: A compact copper–water loop heat pipe (LHP) with an effective length of 310 mm equipped with a flat–oval evaporator measuring 80 (L) × 42 (W) × 7 (H) has been tested. The vapor line and the condenser had the same internal diameter of 5.4 mm. The internal diameter of the liquid line was 3.4 mm. Tests were conducted with a heat source which had a heating surface of 30 mm × 30 mm. The condenser was cooled by running water with a temperature of 20 °C. In the horizontal position the device has exhibited serviceability in the heat load range from 5 W to 1200 W at vapor temperatures from 26.5 °C to 103.4 °C. The maximum capacity was achieved at a heat source temperature of 143.5 °C, when the LHP thermal resistance was equal to 0.044 °C/W. The corresponding values of thermal resistance for the evaporator and the condenser were at a level of 0.006 °C/W and 0.038 °C/W. A minimum thermal resistance of 0.097 °C/W for the “heat source–LHP–cooling water” system was obtained at a heat load of about 700 W, at which the temperature of the heat source was 87 °C
\\\\expert2\\NBO\\Applied Thermal Engineering\\2011, v. 31, p.3533.pdf
Найти похожие

 1-10    11-20   21-30   31-38 
 

Сиглы отделов ЦНБ УрО РАН


  бр.ф. - Бронированный фонд

  бф - Научно-библиографический отдел

  БХЛ - Фонд художественной литературы

  ИИиА -Фонд исторической литературы в ЦНБ УрО РАН

  ИМЕТ -Отдел ЦНБ в Институте металлургии УрО РАН

  кх - Отдел фондов (книгохранениe)

  МБА - Межбиблиотечный абонемент

  мф - Методический фонд

  ок - Отдел научной каталогизации

  оку - Отдел комплектования и учета

  орф - Обменно-резервный фонд

  пф - Читальный зал деловой и патентной информации

  рк - Фонд редкой книги

  ч/з - Главный читальный зал

  эр - Зал электронных ресурсов

  

Сиглы библиотек институтов и НЦ УрО РАН
© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)
Яндекс.Метрика