Главная Новые поступления Описание Шлюз Z39.50

Базы данных


Труды сотрудников Института теплофизики УрО РАН - результаты поиска

Вид поиска

Область поиска
 Найдено в других БД:Каталог книг и продолжающихся изданий (9)Каталог препринтов УрО РАН (1975 г. - ) (1)Труды Института высокотемпературной электрохимии УрО РАН (21)Труды Института истории и археологии УрО РАН (2)Труды сотрудников Института органического синтеза УрО РАН (82)Труды сотрудников Института химии твердого тела УрО РАН (30)Расплавы (18)Публикации Чарушина В.Н. (18)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=COPPER<.>)
Общее количество найденных документов : 30
Показаны документы с 1 по 30
1.
Инвентарный номер: нет.
   
   D 67


    Dmitrin, V. I.
    Experimental investigations of a closed-loop oscillating heat pipe / V. I. Dmitrin, Yu. F. Maydanik // High Temperature. - 2007. - Vol. 45, № 5. - С. 703-707. - Bibliogr : с. 707 (6 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ZONES OF HEATING -- HEAT TRANSPORT -- SIMULTANEOUS DECREASE
Аннотация: Results are given of experimental investigations of an oscillating heat pipe (OHP) made in the form of a closed-loop coil of a copper capillary tube with an inside diameter of 2 mm, 4.5 m long, and filled with water in an amount of 50% of internal volume. The starting characteristics of OHP are studied in the range of heat loads from 30 to 100 W under conditions of cooling by way of natural and forced air convection. The pattern of temperature pulsations in the zones of heating, heat transport, and cooling is investigated. It is found that temperature pulsations exhibit a chaotic pattern. In cooling of an OHP by way of natural convection, the increase in heat load is accompanied by an increase in the maximal temperature of the heating zone with a simultaneous decrease in the nonuniformity of the temperature field. When an OHP is cooled by way of forced convection, a decrease in the maximal temperature of the heating zone is observed; however, this is accompanied by an increase in the amplitude of temperature pulsations and in the nonuniformity of the temperature field

\\\\Expert2\\NBO\\High Temperature\\2007, v. 45, p.703.pdf
Найти похожие

2.
Инвентарный номер: нет.
   
   B 16


    Baidakov, V. G.
    Superheating of liquid xenon in metal tubes [Electronic resource] / V. G. Baidakov, A. M. Kaverin // Journal of Chemical Physics. - 2009. - Vol.131, №6. - Artical Number 064708
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LINE-TENSION -- SURFACE TENSION -- NUCLEATION
Аннотация: The method of measuring the lifetime has been used to investigate the kinetics of spontaneous boiling-up of superheated xenon in copper tubes. In experiments the temperature dependence of the mean lifetime has been determined at pressures of 1.48 and 1.98 MPa. The data obtained have been compared with homogeneous nucleation theory. It has been found that experimental values of the attainable superheating temperature and the derivative (partial derivative ln J/partial derivative T)(p) are systematically lower than their theoretical values. A description of experimental data in the framework of heterogeneous nucleation theory has shown that for the agreement of theory and experiment with the use of a macroscopic model of nucleation on a smooth surface it is necessary to take the value of the equilibrium contact angle theta(0) equal to 70 degrees, which is not a characteristic for a xenon-metal system. Taking into account the contribution of the energy of the three-phase contact solid wall-liquid-gas in a microscopic nucleation model makes it possible to reconcile heterogeneous nucleation theory and experimental data at a contact angle theta(0) close to zero, with the linear tension taken equal to -6x10(-12) J/m and the microscopic contact angle theta(*)similar or equal to 57 degrees. The number of weakened sites, on which bubbles may form, is always smaller than the number of molecules adjacent to the solid wall

\\\\Expert2\\nbo\\Journal of Chemical Physics\\2009, v.131, p.064708.pdf
Найти похожие

3.
Инвентарный номер: нет.
   
   P 30


   
    Passive cooling system for an aircraft electronic box / Yu. F. Maydanik, S. V. Vershinin, V. G. Pastukhov, M. Chernysheva, C. Sarno, C. Tantolin // Heat Pipe Science and Technology, An International Journal , vol. - 2010. - Vol.1, №3. - С. 251-260
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AIRCRAFTS -- LOOP HEAT PIPE -- ELECTRONIC BOX -- PASSIVE COOLING SYSTEM
Аннотация: The paper represents the results of development and thermal tests of a cooling system of a seat electronic box, managing the in-flight entertainment system used aboard commercial aircrafts. The system is completely passive and consists of two conventional copper-water miniature heat pipes and two miniature loop heat pipes with R-141b as a working fluid. Two crossbeams of a passenger seat made of aluminum alloy cooled by means of free air convection were used as heat sinks. At the maximum heat load of 100 W the cooling system provides a temperature of a cooled object at a level of not above 81°C at the ambient temperature of 22°C, which is 4°C below that of the maximum specified temperature

Найти похожие

4.
Инвентарный номер: нет.
   
   M 19


    Maydanik, Yu. F.
    Development and Tests of Miniature Loop Heat Pipe with a Flat Evaporator / Yu. F. Maydanik, S. V. Vershinin, M. A. Chenysheva // SAE 2000 Transaction - Journal of Aerospace. - 2001. - Paper Number: 2000-01-2491
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AMMONIA MINIATURE -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper presents the results of analysis, development and tests of an ammonia miniature loop heat pipe (MLHP) with a flat evaporator, which has an active-zone diameter of 30mm. The length and the diameter of the vapor and the liquid lines are 1m and 2/1.2mm. The device serviceability has been demonstrated at a horizontal and a vertical orientation in 1-g conditions. The maximum heat load achieved on trials was equal, respectively, to 160W and 120W, which corresponds to a heat flow in the evaporation zone of 23 W/cm 2 and 17 W/cm 2 . The minimum thermal resistance at nominal heat loads from 40 to 80 W varied in the range from 0.42 W/m 2 K to 0.59 W/m 2 K. A comparison has been made with a model MLHP with a cylindrical evaporator equipped with a copper and aluminum “sa

Найти похожие

5.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2008. - Vol.51, №17-18. - С. 4204-4215
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- LHP START-UP -- BOILING-UP
Аннотация: The paper investigates the transient processes of heat and mass transfer in a cylindrical evaporator of a loop heat pipe (LHP) during the device start-up. One of the most “arduous” prestart situations, which is characterized by the absence of a liquid in the evaporator central core and filled vapor removal channels, has been considered. With such liquid distribution a successful start-up of an LHP becomes possible only after formation of the vapor phase in the vapor removal channels and their liberation from the liquid. The aim of the investigations is to determine conditions that ensure the boiling-up of a working fluid in vapor removal channels. The problem was solved by a numerical method. Simulation of start-up regimes has been performed for different heat loads and different structural materials of the evaporator. Copper, titanium and nickel wick have been examined. Calculations have been made for three different working fluids; water, ammonia and acetone. Account has been taken of the conditions of heat exchange between the compensation chamber and surrounding medium

Найти похожие

6.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Compact cooler for electronics on the basis of a pulsating heat pipe / Yu. F. Maydanik, V. I. Dmitrin, V. G. Pastukhov // Applied Thermal Engineering. - 2009. - Vol.29, №17-18. - С. 3511-3517
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
PULSATING HEAT PIPE -- ELECTRONICS COOLING -- HEAT LOAD
Аннотация: The paper presents the results of developing and investigating a compact cooler for electronics made on the basis of a closed loop pulsating heat pipe (CLPHP). The cooler is made of a copper tube 5.6 m long with OD of 2 mm and ID of 1.2 mm in the form a 3D spiral containing 17 turns. The device is equipped with a light copper radiator with a finning area of 1670 cm2, which was blown by an axial fan located inside the spiral. The thermal interface of the cooler situated in the heating zone is made of a copper plate with a thermocontact surface measuring 40 × 35 mm, which was in thermal contact with all the turns of the device. The cooler overall dimensions are 105 × 100 × 60 mm, its mass is 350 g. The operation of the cooler has been investigated with water, methanol and R141b as working fluids at a uniform and concentrated supply of a heat load in different heating modes. A reliable operation of the device has been demonstrated in the range of heat loads from 5 to 250 W. A minimum thermal resistance “heat source–ambient air” equal to 0.32 °C/W was attained with water and methanol as working fluids at a uniform heat load of 250 W. With a heat load concentrated on a section of the thermal interface limited by an area of 1 cm2, a minimum value of thermal resistance equal to 0.62 °C/W was attained at a heat load of 125 W when methanol was used as a working fluid

Найти похожие

7.
Инвентарный номер: нет.
   


   
    Heat and Mass Transfer in Evaporator of Loop Heat Pipe // Journal of Termophysics and Heat Transfer. - 2009. - Vol.23, №4. - С. 725-731
Кл.слова (ненормированные):
HEAT-EXCHANGE -- EVAPORATOR -- LOOP HEAT PIPE
Аннотация: Investigation of heat-exchange processes in the evaporator of a loop heat pipe is important for the development of heat transfer devices with low thermal resistances. A two-dimensional mathematical model of the evaporator active zone is presented. Three modes of vapor generation in the wick have been examined, where each differs in the mechanism of the vapor phase formation and in the saturation of the capillary structure: 1) evaporation to the vapor grooves, 2) volumetric evaporation in the two-phase zone, and 3) volumetric evaporation in the two-phase zone separated from the heated wall of the evaporator by dried zones. Conditions identifying changes between modes have been formulated. Structural characteristics of the wick with different pore sizes have been taken into account. Using a numericalanalytical method, results were obtained for three copper loop heat pipes with biporous wicks, where the working fluid was water for one of the loop heat pipes and methanol for the other two. The heat-load dependent temperature drop between the evaporator wall and the vapor in the vapor grooves has been presented. Additionally, a comparative analysis of calculated and experimental results was performed

Найти похожие

8.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Analysis of heat exchange in the compensation chamber of a loop heat pipe [Электронный ресурс] / M. A. Chernysheva, V. G. Pastukhov, Yu. F. Maydanik // Energy . - 2013. - Article in Press
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
COMPENSATION CHAMBER -- FLAT EVAPORATOR -- HEAT-AND-MASS TRANSFER -- LOOP HEAT PIPES
Аннотация: A three-dimensional heat-and-mass transfer model of a flat evaporator of a loop heat pipe has been developed for investigating heat-and-mass in a compensation chamber filled with a liquid. Numerical simulation was implemented using EFDLab® software package in order to predict the temperature distribution of the flat evaporator of a copper-water LHP (loop heat pipe) as well as the flow streamline and velocity field in the compensation chamber as a function of heat load. A computer simulation makes it possible to evaluate the heat exchange at the inner surface of the compensation chamber. Heat exchange data were used as a boundary condition in researching the problem of the drying effect of a wick and a transformation of the evaporating front in the active zone of the flat evaporator. © 2013 Elsevier Ltd. All rights reserved

Найти похожие

9.
Инвентарный номер: нет.
   
   B 27


    Bartuli, E.
    Visual and instrumental investigations of a copper-water loop heat pipe [Электронный ресурс] / E. Bartuli, S. V. Vershinin, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2013. - Vol.61, №1. - P35-40
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
CONDENSATION -- COPPER-WATER LOOP HEAT PIPE -- FLAT GAP CONDENSER
Аннотация: Visual and instrumental investigations of the processes of condensation and redistribution of a working fluid in a loop heat pipe have been carried out. This paper presents the results of an experimental investigation of the heat transfer and hydrodynamics during the condensation of water vapor in a flat gap condenser measuring 80 × 40 × 1 mm. Investigations have been conducted at a condenser cooling temperature of 20, 40 and 60 °. During all operating modes a stratified two-phase flow and film condensation have been observed. The temperature field in the condenser has been measured, and the heat-transfer coefficients and the thermal resistances have been determined

Найти похожие

10.
Инвентарный номер: нет.
   
   C 51


    Chenysheva, M. A.
    Simulation of thermal processes in a flat evaporator of a copper-water loop heat pipe under uniform and concentrated heating [Электронный ресурс] / M. A. Chenysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2012. - Vol.55, № 25-26. - P7385-7397
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
3D MODEL -- EVAPORATION -- FLAT EVAPORATOR
Аннотация: A 3D model has been developed for investigating heat and mass transfer in a flat evaporator of a copper-water loop heat pipe. It takes into account heat-transfer processes in the active zone, the barrier layer of the wick, the wall and the compensation chamber. The problem was solved by the finite difference method with the use of a nonuniform grid adapted to the configuration of the flat evaporator and its geometric peculiarities. Investigations have been carried out for understanding the effect of the heating zone size on heat distribution in the evaporator. The heating area was 9 cm 2 with a uniform heat supply and 1 cm 2 with a concentrated one. Numerical simulation has been performed for a heat load range from 20 to 1100 W. Data have shown that a decrease in the heating area at a fixed heat load results in both increasing temperature on the evaporator wall under the heater and local wick draining in the active zone. The results of the model have been verified using results of experimental tests.

Найти похожие

11.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    3D-model for heat and mass transfer simulation in flat evaporator of copper-water loop heat pipe [Electronic resource] / M. A. Chernysheva, Yu. F. Maydanik // Applied Thermal Engineering. - 2012. - Vol.33-34, №1. - P124-134
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
EVAPORATION -- FLAT EVAPORATOR -- MATHEMATICAL MODEL
Аннотация: This paper presents a three-dimension mathematical model of a flat evaporator of a loop heat pipe which takes into account the peculiarities of the evaporator configuration and the specific character of a one-side heat load supply. All the main structural elements of the evaporator, such as its body, wick, vapor-removal grooves, barrier layer and compensation chamber, are included in the model. The intensity of heat-exchange processes during evaporation in the active zone is determined by local drops between the temperature at the wick surface and the vapor temperature. The effects of drying the wick in the evaporation zone are also taken into account. The problem was solved by a numerical method. The results of calculations are presented for a copper evaporator and water as a working fluid in the heat load range from 20 to 1100 W. A comparative analysis of calculated and experimental data has been made

\\\\expert2\\NBO\\Applied Thermal Engineering\\2012, v. 33-34, p.124.pdf
Найти похожие

12.
Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Combined LHP and PHP based heat-transfer system / V. G. Pastukhov, Yu. F. Maydanik // International Journal of Thermal Science. - 2013. - Vol.74. - С. 81-85
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT-TRANSFER SYSTEM -- LOOP HEAT PIPE -- PULSATING HEAT PIPE
Аннотация: The paper presents the results of development and experimental investigation of a heat-transfer system consisting of a pulsating and a loop heat pipe. The pulsating heat pipe (PHP) was made of a copper capillary tube 2 mm in diameter and located on an aluminum plate measuring 260 × 200 × 1 mm, had a thermal contact with the evaporator interface of a loop heat pipe (LHP) 0.6 m long. The working fluid of the PHP was R141b. The LHP was filled with ammonia. A heat-load source measuring 200 × 200 mm was located on the PHP, and its heat was transferred to the LHP evaporator. Tests were conducted at different orientations in the gravity field at heat loads from 10 to 170 W and heat-sink temperatures from −20 to +20 °C. A minimum value of thermal resistance equal to 0.28 °C/W was achieved in the heat load range from 50 to 90 W.

Найти похожие

13.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Copper-water loop heat pipes for energy-efficient cooling systems of supercomputers / M. A. Chernysheva, S. Yushakova, Yu. F. Maydanik // Energy . - 2014. - С. 534-542. - Bibliogr. : p. 542 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
COOLING SYSTEM -- OPERATING TEMPERATURE -- LOOP HEAT PIPE
Аннотация: An implementation of a cooling system with a loop heat pipe for thermal control of supercomputers is considered. For this purpose two copper-water loop heat pipes (LHPs) with an effective length of 400mm and ID/OD diameters of the vapor lines of 3/4 and 4/5mm correspondingly were designed and tested. The LHPs were equipped with a flat-oval evaporator with one-sided heat supply. The evaporator had a thickness of 7mm, a length (including the compensation chamber) of 80mm and a width of 42mm. The influence of the cooling temperature of the condenser on the LHP operating characteristics was the central issue of this research. Tests were conducted in the range of the cooling temperature from 20 to 80°C. The heat load supplied to the evaporator was varied from 20 to 600W. A mathematical model for prediction of the LHP's operating temperature has been developed. It takes into consideration three operating modes of a loop heat pipe. Modeling results and their analysis are presented

\\\\expert2\\nbo\\Energy\\2014, v. 69, p. 534-542.pdf
Найти похожие

14.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Review: Loop heat pipes with flat evaporators [Electronic resource] / Yu. F. Maydanik, M. A. Chernysheva, V. G. Pastukhov. - [Б. м. : б. и.]. - Систем. требования: http://www.scopus.com/record/display.url?eid=2-s2.0-84898450074&origin=resultslist&sort=plf-f&src=s&st1=Maydanik&st2=YU.+F. - 27.08.2014. - Bibliogr. : p. 306-307 (60 ref.). - Б. ц.
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ELECTRONICS COOLING -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper contains an analytical review of developments, results of tests and simulation of loop heat pipes (LHPs) with disk-shaped, rectangular and flat-oval evaporators. Two main directions have been noted in the development of flat evaporators, which may be arbitrarily separated into evaporators with opposite replenishment (EORs) and evaporators with longitudinal replenishment (ELRs). The bodies of such evaporators are made of stainless steel, copper, aluminum. For making wicks use is made of sintered powders and mesh of stainless steel, nickel, titanium, copper, polytetrafluoroethylene (PTFE) and ceramics. Monoporous and biporous capillary structures are considered. Water, ammonia, methanol, ethanol, and acetone have been tested as working fluids. The best results were shown by the combination "copper-copper-water" at temperatures above 70 °C, when on trials an evaporator thermal resistance of less than 0.01°C/W and a heat flux close to 1000 W/cm2 were achieved. For temperatures below 70°C the most efficient combination is "stainless steel-nickel-ammonia".

Найти похожие

15.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe [Electronic resource] / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2016. - Vol. 92. - С. 1026-1033. - Bibliogr. : p. 1033 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- POROUS MATERIAL -- EVAPORATOR
Аннотация: Two models of a flat disk-shaped evaporator of a loop heat pipe have been developed for analyzing the effect of the convective component on heat transfer in a wick, and also on heat-exchange processes in an evaporation zone. Simulation data were obtained for two evaporators. The first evaporator was made entirely of copper, and the second had a body of stainless steel and a nickel wick. The geometrical dimensions of the evaporators were equal. The diameter of the heating zone was 30 mm. Calculations were made for heat fluxes from 2.8 ⋅ 104 to 4.2 ⋅ 105 W/m2. Water was used as a working fluid. An analysis of the results has shown that the contribution of the convective component to the overall heat transfer is small. The higher the thermal conductivity of the wick, the smaller the effect that the convection has on the temperature distribution in the evaporator.

\\\\expert2\\nbo\\International Journal of Heat and Mass Transfer\\2016, v. 92, p.1026-1033.pdf
Найти похожие

16.
Инвентарный номер: нет.
   
   D 67


    Dmitrin, V. I.
    Experimental investigations of a closed-loop oscillating heat pipe / V. I. Dmitrin, Yu. F. Maydanik // High Temperature. - 2007. - Vol. 45, № 5. - С. 703-707. - Bibliogr : с. 707 (6 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ZONES OF HEATING -- HEAT TRANSPORT -- SIMULTANEOUS DECREASE
Аннотация: Results are given of experimental investigations of an oscillating heat pipe (OHP) made in the form of a closed-loop coil of a copper capillary tube with an inside diameter of 2 mm, 4.5 m long, and filled with water in an amount of 50% of internal volume. The starting characteristics of OHP are studied in the range of heat loads from 30 to 100 W under conditions of cooling by way of natural and forced air convection. The pattern of temperature pulsations in the zones of heating, heat transport, and cooling is investigated. It is found that temperature pulsations exhibit a chaotic pattern. In cooling of an OHP by way of natural convection, the increase in heat load is accompanied by an increase in the maximal temperature of the heating zone with a simultaneous decrease in the nonuniformity of the temperature field. When an OHP is cooled by way of forced convection, a decrease in the maximal temperature of the heating zone is observed; however, this is accompanied by an increase in the amplitude of temperature pulsations and in the nonuniformity of the temperature field

\\\\Expert2\\NBO\\High Temperature\\2007, v. 45, p.703.pdf
Найти похожие

17.
Инвентарный номер: нет.
   
   B 16


    Baidakov, V. G.
    Superheating of liquid xenon in metal tubes [Electronic resource] / V. G. Baidakov, A. M. Kaverin // Journal of Chemical Physics. - 2009. - Vol.131, №6. - Artical Number 064708
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LINE-TENSION -- SURFACE TENSION -- NUCLEATION
Аннотация: The method of measuring the lifetime has been used to investigate the kinetics of spontaneous boiling-up of superheated xenon in copper tubes. In experiments the temperature dependence of the mean lifetime has been determined at pressures of 1.48 and 1.98 MPa. The data obtained have been compared with homogeneous nucleation theory. It has been found that experimental values of the attainable superheating temperature and the derivative (partial derivative ln J/partial derivative T)(p) are systematically lower than their theoretical values. A description of experimental data in the framework of heterogeneous nucleation theory has shown that for the agreement of theory and experiment with the use of a macroscopic model of nucleation on a smooth surface it is necessary to take the value of the equilibrium contact angle theta(0) equal to 70 degrees, which is not a characteristic for a xenon-metal system. Taking into account the contribution of the energy of the three-phase contact solid wall-liquid-gas in a microscopic nucleation model makes it possible to reconcile heterogeneous nucleation theory and experimental data at a contact angle theta(0) close to zero, with the linear tension taken equal to -6x10(-12) J/m and the microscopic contact angle theta(*)similar or equal to 57 degrees. The number of weakened sites, on which bubbles may form, is always smaller than the number of molecules adjacent to the solid wall

\\\\Expert2\\nbo\\Journal of Chemical Physics\\2009, v.131, p.064708.pdf
Найти похожие

18.
Инвентарный номер: нет.
   
   P 30


   
    Passive cooling system for an aircraft electronic box / Yu. F. Maydanik, S. V. Vershinin, V. G. Pastukhov, M. Chernysheva, C. Sarno, C. Tantolin // Heat Pipe Science and Technology, An International Journal , vol. - 2010. - Vol.1, №3. - С. 251-260
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AIRCRAFTS -- LOOP HEAT PIPE -- ELECTRONIC BOX -- PASSIVE COOLING SYSTEM
Аннотация: The paper represents the results of development and thermal tests of a cooling system of a seat electronic box, managing the in-flight entertainment system used aboard commercial aircrafts. The system is completely passive and consists of two conventional copper-water miniature heat pipes and two miniature loop heat pipes with R-141b as a working fluid. Two crossbeams of a passenger seat made of aluminum alloy cooled by means of free air convection were used as heat sinks. At the maximum heat load of 100 W the cooling system provides a temperature of a cooled object at a level of not above 81°C at the ambient temperature of 22°C, which is 4°C below that of the maximum specified temperature

Найти похожие

19.
Инвентарный номер: нет.
   
   M 19


    Maydanik, Yu. F.
    Development and Tests of Miniature Loop Heat Pipe with a Flat Evaporator / Yu. F. Maydanik, S. V. Vershinin, M. A. Chenysheva // SAE 2000 Transaction - Journal of Aerospace. - 2001. - Paper Number: 2000-01-2491
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AMMONIA MINIATURE -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper presents the results of analysis, development and tests of an ammonia miniature loop heat pipe (MLHP) with a flat evaporator, which has an active-zone diameter of 30mm. The length and the diameter of the vapor and the liquid lines are 1m and 2/1.2mm. The device serviceability has been demonstrated at a horizontal and a vertical orientation in 1-g conditions. The maximum heat load achieved on trials was equal, respectively, to 160W and 120W, which corresponds to a heat flow in the evaporation zone of 23 W/cm 2 and 17 W/cm 2 . The minimum thermal resistance at nominal heat loads from 40 to 80 W varied in the range from 0.42 W/m 2 K to 0.59 W/m 2 K. A comparison has been made with a model MLHP with a cylindrical evaporator equipped with a copper and aluminum “sa

Найти похожие

20.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2008. - Vol.51, №17-18. - С. 4204-4215
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- LHP START-UP -- BOILING-UP
Аннотация: The paper investigates the transient processes of heat and mass transfer in a cylindrical evaporator of a loop heat pipe (LHP) during the device start-up. One of the most “arduous” prestart situations, which is characterized by the absence of a liquid in the evaporator central core and filled vapor removal channels, has been considered. With such liquid distribution a successful start-up of an LHP becomes possible only after formation of the vapor phase in the vapor removal channels and their liberation from the liquid. The aim of the investigations is to determine conditions that ensure the boiling-up of a working fluid in vapor removal channels. The problem was solved by a numerical method. Simulation of start-up regimes has been performed for different heat loads and different structural materials of the evaporator. Copper, titanium and nickel wick have been examined. Calculations have been made for three different working fluids; water, ammonia and acetone. Account has been taken of the conditions of heat exchange between the compensation chamber and surrounding medium

Найти похожие

21.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Compact cooler for electronics on the basis of a pulsating heat pipe / Yu. F. Maydanik, V. I. Dmitrin, V. G. Pastukhov // Applied Thermal Engineering. - 2009. - Vol.29, №17-18. - С. 3511-3517
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
PULSATING HEAT PIPE -- ELECTRONICS COOLING -- HEAT LOAD
Аннотация: The paper presents the results of developing and investigating a compact cooler for electronics made on the basis of a closed loop pulsating heat pipe (CLPHP). The cooler is made of a copper tube 5.6 m long with OD of 2 mm and ID of 1.2 mm in the form a 3D spiral containing 17 turns. The device is equipped with a light copper radiator with a finning area of 1670 cm2, which was blown by an axial fan located inside the spiral. The thermal interface of the cooler situated in the heating zone is made of a copper plate with a thermocontact surface measuring 40 × 35 mm, which was in thermal contact with all the turns of the device. The cooler overall dimensions are 105 × 100 × 60 mm, its mass is 350 g. The operation of the cooler has been investigated with water, methanol and R141b as working fluids at a uniform and concentrated supply of a heat load in different heating modes. A reliable operation of the device has been demonstrated in the range of heat loads from 5 to 250 W. A minimum thermal resistance “heat source–ambient air” equal to 0.32 °C/W was attained with water and methanol as working fluids at a uniform heat load of 250 W. With a heat load concentrated on a section of the thermal interface limited by an area of 1 cm2, a minimum value of thermal resistance equal to 0.62 °C/W was attained at a heat load of 125 W when methanol was used as a working fluid

Найти похожие

22.
Инвентарный номер: нет.
   


   
    Heat and Mass Transfer in Evaporator of Loop Heat Pipe // Journal of Termophysics and Heat Transfer. - 2009. - Vol.23, №4. - С. 725-731
Кл.слова (ненормированные):
HEAT-EXCHANGE -- EVAPORATOR -- LOOP HEAT PIPE
Аннотация: Investigation of heat-exchange processes in the evaporator of a loop heat pipe is important for the development of heat transfer devices with low thermal resistances. A two-dimensional mathematical model of the evaporator active zone is presented. Three modes of vapor generation in the wick have been examined, where each differs in the mechanism of the vapor phase formation and in the saturation of the capillary structure: 1) evaporation to the vapor grooves, 2) volumetric evaporation in the two-phase zone, and 3) volumetric evaporation in the two-phase zone separated from the heated wall of the evaporator by dried zones. Conditions identifying changes between modes have been formulated. Structural characteristics of the wick with different pore sizes have been taken into account. Using a numericalanalytical method, results were obtained for three copper loop heat pipes with biporous wicks, where the working fluid was water for one of the loop heat pipes and methanol for the other two. The heat-load dependent temperature drop between the evaporator wall and the vapor in the vapor grooves has been presented. Additionally, a comparative analysis of calculated and experimental results was performed

Найти похожие

23.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Analysis of heat exchange in the compensation chamber of a loop heat pipe [Электронный ресурс] / M. A. Chernysheva, V. G. Pastukhov, Yu. F. Maydanik // Energy . - 2013. - Article in Press
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
COMPENSATION CHAMBER -- FLAT EVAPORATOR -- HEAT-AND-MASS TRANSFER -- LOOP HEAT PIPES
Аннотация: A three-dimensional heat-and-mass transfer model of a flat evaporator of a loop heat pipe has been developed for investigating heat-and-mass in a compensation chamber filled with a liquid. Numerical simulation was implemented using EFDLab® software package in order to predict the temperature distribution of the flat evaporator of a copper-water LHP (loop heat pipe) as well as the flow streamline and velocity field in the compensation chamber as a function of heat load. A computer simulation makes it possible to evaluate the heat exchange at the inner surface of the compensation chamber. Heat exchange data were used as a boundary condition in researching the problem of the drying effect of a wick and a transformation of the evaporating front in the active zone of the flat evaporator. © 2013 Elsevier Ltd. All rights reserved

Найти похожие

24.
Инвентарный номер: нет.
   
   B 27


    Bartuli, E.
    Visual and instrumental investigations of a copper-water loop heat pipe [Электронный ресурс] / E. Bartuli, S. V. Vershinin, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2013. - Vol.61, №1. - P35-40
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
CONDENSATION -- COPPER-WATER LOOP HEAT PIPE -- FLAT GAP CONDENSER
Аннотация: Visual and instrumental investigations of the processes of condensation and redistribution of a working fluid in a loop heat pipe have been carried out. This paper presents the results of an experimental investigation of the heat transfer and hydrodynamics during the condensation of water vapor in a flat gap condenser measuring 80 × 40 × 1 mm. Investigations have been conducted at a condenser cooling temperature of 20, 40 and 60 °. During all operating modes a stratified two-phase flow and film condensation have been observed. The temperature field in the condenser has been measured, and the heat-transfer coefficients and the thermal resistances have been determined

Найти похожие

25.
Инвентарный номер: нет.
   
   C 51


    Chenysheva, M. A.
    Simulation of thermal processes in a flat evaporator of a copper-water loop heat pipe under uniform and concentrated heating [Электронный ресурс] / M. A. Chenysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2012. - Vol.55, № 25-26. - P7385-7397
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
3D MODEL -- EVAPORATION -- FLAT EVAPORATOR
Аннотация: A 3D model has been developed for investigating heat and mass transfer in a flat evaporator of a copper-water loop heat pipe. It takes into account heat-transfer processes in the active zone, the barrier layer of the wick, the wall and the compensation chamber. The problem was solved by the finite difference method with the use of a nonuniform grid adapted to the configuration of the flat evaporator and its geometric peculiarities. Investigations have been carried out for understanding the effect of the heating zone size on heat distribution in the evaporator. The heating area was 9 cm 2 with a uniform heat supply and 1 cm 2 with a concentrated one. Numerical simulation has been performed for a heat load range from 20 to 1100 W. Data have shown that a decrease in the heating area at a fixed heat load results in both increasing temperature on the evaporator wall under the heater and local wick draining in the active zone. The results of the model have been verified using results of experimental tests.

Найти похожие

26.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    3D-model for heat and mass transfer simulation in flat evaporator of copper-water loop heat pipe [Electronic resource] / M. A. Chernysheva, Yu. F. Maydanik // Applied Thermal Engineering. - 2012. - Vol.33-34, №1. - P124-134
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
EVAPORATION -- FLAT EVAPORATOR -- MATHEMATICAL MODEL
Аннотация: This paper presents a three-dimension mathematical model of a flat evaporator of a loop heat pipe which takes into account the peculiarities of the evaporator configuration and the specific character of a one-side heat load supply. All the main structural elements of the evaporator, such as its body, wick, vapor-removal grooves, barrier layer and compensation chamber, are included in the model. The intensity of heat-exchange processes during evaporation in the active zone is determined by local drops between the temperature at the wick surface and the vapor temperature. The effects of drying the wick in the evaporation zone are also taken into account. The problem was solved by a numerical method. The results of calculations are presented for a copper evaporator and water as a working fluid in the heat load range from 20 to 1100 W. A comparative analysis of calculated and experimental data has been made

\\\\expert2\\NBO\\Applied Thermal Engineering\\2012, v. 33-34, p.124.pdf
Найти похожие

27.
Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Combined LHP and PHP based heat-transfer system / V. G. Pastukhov, Yu. F. Maydanik // International Journal of Thermal Science. - 2013. - Vol.74. - С. 81-85
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT-TRANSFER SYSTEM -- LOOP HEAT PIPE -- PULSATING HEAT PIPE
Аннотация: The paper presents the results of development and experimental investigation of a heat-transfer system consisting of a pulsating and a loop heat pipe. The pulsating heat pipe (PHP) was made of a copper capillary tube 2 mm in diameter and located on an aluminum plate measuring 260 × 200 × 1 mm, had a thermal contact with the evaporator interface of a loop heat pipe (LHP) 0.6 m long. The working fluid of the PHP was R141b. The LHP was filled with ammonia. A heat-load source measuring 200 × 200 mm was located on the PHP, and its heat was transferred to the LHP evaporator. Tests were conducted at different orientations in the gravity field at heat loads from 10 to 170 W and heat-sink temperatures from −20 to +20 °C. A minimum value of thermal resistance equal to 0.28 °C/W was achieved in the heat load range from 50 to 90 W.

Найти похожие

28.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Copper-water loop heat pipes for energy-efficient cooling systems of supercomputers / M. A. Chernysheva, S. Yushakova, Yu. F. Maydanik // Energy . - 2014. - С. 534-542. - Bibliogr. : p. 542 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
COOLING SYSTEM -- OPERATING TEMPERATURE -- LOOP HEAT PIPE
Аннотация: An implementation of a cooling system with a loop heat pipe for thermal control of supercomputers is considered. For this purpose two copper-water loop heat pipes (LHPs) with an effective length of 400mm and ID/OD diameters of the vapor lines of 3/4 and 4/5mm correspondingly were designed and tested. The LHPs were equipped with a flat-oval evaporator with one-sided heat supply. The evaporator had a thickness of 7mm, a length (including the compensation chamber) of 80mm and a width of 42mm. The influence of the cooling temperature of the condenser on the LHP operating characteristics was the central issue of this research. Tests were conducted in the range of the cooling temperature from 20 to 80°C. The heat load supplied to the evaporator was varied from 20 to 600W. A mathematical model for prediction of the LHP's operating temperature has been developed. It takes into consideration three operating modes of a loop heat pipe. Modeling results and their analysis are presented

\\\\expert2\\nbo\\Energy\\2014, v. 69, p. 534-542.pdf
Найти похожие

29.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Review: Loop heat pipes with flat evaporators [Electronic resource] / Yu. F. Maydanik, M. A. Chernysheva, V. G. Pastukhov. - [Б. м. : б. и.]. - Систем. требования: http://www.scopus.com/record/display.url?eid=2-s2.0-84898450074&origin=resultslist&sort=plf-f&src=s&st1=Maydanik&st2=YU.+F. - 27.08.2014. - Bibliogr. : p. 306-307 (60 ref.). - Б. ц.
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ELECTRONICS COOLING -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper contains an analytical review of developments, results of tests and simulation of loop heat pipes (LHPs) with disk-shaped, rectangular and flat-oval evaporators. Two main directions have been noted in the development of flat evaporators, which may be arbitrarily separated into evaporators with opposite replenishment (EORs) and evaporators with longitudinal replenishment (ELRs). The bodies of such evaporators are made of stainless steel, copper, aluminum. For making wicks use is made of sintered powders and mesh of stainless steel, nickel, titanium, copper, polytetrafluoroethylene (PTFE) and ceramics. Monoporous and biporous capillary structures are considered. Water, ammonia, methanol, ethanol, and acetone have been tested as working fluids. The best results were shown by the combination "copper-copper-water" at temperatures above 70 °C, when on trials an evaporator thermal resistance of less than 0.01°C/W and a heat flux close to 1000 W/cm2 were achieved. For temperatures below 70°C the most efficient combination is "stainless steel-nickel-ammonia".

Найти похожие

30.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe [Electronic resource] / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2016. - Vol. 92. - С. 1026-1033. - Bibliogr. : p. 1033 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- POROUS MATERIAL -- EVAPORATOR
Аннотация: Two models of a flat disk-shaped evaporator of a loop heat pipe have been developed for analyzing the effect of the convective component on heat transfer in a wick, and also on heat-exchange processes in an evaporation zone. Simulation data were obtained for two evaporators. The first evaporator was made entirely of copper, and the second had a body of stainless steel and a nickel wick. The geometrical dimensions of the evaporators were equal. The diameter of the heating zone was 30 mm. Calculations were made for heat fluxes from 2.8 ⋅ 104 to 4.2 ⋅ 105 W/m2. Water was used as a working fluid. An analysis of the results has shown that the contribution of the convective component to the overall heat transfer is small. The higher the thermal conductivity of the wick, the smaller the effect that the convection has on the temperature distribution in the evaporator.

\\\\expert2\\nbo\\International Journal of Heat and Mass Transfer\\2016, v. 92, p.1026-1033.pdf
Найти похожие

 

Сиглы отделов ЦНБ УрО РАН


  бр.ф. - Бронированный фонд

  бф - Научно-библиографический отдел

  БХЛ - Фонд художественной литературы

  ИИиА -Фонд исторической литературы в ЦНБ УрО РАН

  ИМЕТ -Отдел ЦНБ в Институте металлургии УрО РАН

  кх - Отдел фондов (книгохранениe)

  МБА - Межбиблиотечный абонемент

  мф - Методический фонд

  ок - Отдел научной каталогизации

  оку - Отдел комплектования и учета

  орф - Обменно-резервный фонд

  пф - Читальный зал деловой и патентной информации

  рк - Фонд редкой книги

  ч/з - Главный читальный зал

  эр - Зал электронных ресурсов

  

Сиглы библиотек институтов и НЦ УрО РАН
© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)
Яндекс.Метрика