Главная Новые поступления Описание Шлюз Z39.50

Базы данных


Труды сотрудников Института теплофизики УрО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=EVAPORATOR<.>)
Общее количество найденных документов : 46
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-46 
1.
Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Development and investigation of a cooler for electronics on the basis of two-phase loop thermosyphons / V. G. Pastukhov, Yu. F. Maydanik, V. I. Dmitrin // Heat Pipe Science and Technology, An International Journal , vol. - Vol.1, №1. - С. 47-57
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP THERMOSYPHON -- EVAPORATOR -- CAPILLARY STRUCTURE,
Аннотация: The objective of this work was to develop a device for cooling electronic elements with a heat power up to 30 W by its rejection and dissipation in the ambient by free air convection. The device specification assigned the temperature range of the ambient conditions from −40 to +105° C and the available space of 30(W) × 120(H) × 200(L) mm. As a result a hybrid scheme based on a loop thermosyphon was proposed, where the evaporator embodied the capillary structure. In such a scheme, the return working fluid flow was ensured by the combined action of the gravity and capillary forces. Several prototypes with different loop and evaporator designs were tested in laboratory conditions. Water and heptane were used as working fluids. The experiments showed that the role of the capillary structure locally placed in the evaporator can be efficiently implemented by both highly porous cellular materials and capillary grooves made on the evaporating surface. It is also shown that heptane can be effectively used as a working fluid which is appropriate for the temperature range requirements. At the same time the device has good mass-and-size characteristics and total thermal resistance under a nominal heat load of about 1.7° C/W

Найти похожие

2.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Review: Loop heat pipes with flat evaporators [Electronic resource] / Yu. F. Maydanik, M. A. Chernysheva, V. G. Pastukhov. - [Б. м. : б. и.]. - Систем. требования: http://www.scopus.com/record/display.url?eid=2-s2.0-84898450074&origin=resultslist&sort=plf-f&src=s&st1=Maydanik&st2=YU.+F. - 27.08.2014. - Bibliogr. : p. 306-307 (60 ref.). - Б. ц.
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ELECTRONICS COOLING -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper contains an analytical review of developments, results of tests and simulation of loop heat pipes (LHPs) with disk-shaped, rectangular and flat-oval evaporators. Two main directions have been noted in the development of flat evaporators, which may be arbitrarily separated into evaporators with opposite replenishment (EORs) and evaporators with longitudinal replenishment (ELRs). The bodies of such evaporators are made of stainless steel, copper, aluminum. For making wicks use is made of sintered powders and mesh of stainless steel, nickel, titanium, copper, polytetrafluoroethylene (PTFE) and ceramics. Monoporous and biporous capillary structures are considered. Water, ammonia, methanol, ethanol, and acetone have been tested as working fluids. The best results were shown by the combination "copper-copper-water" at temperatures above 70 °C, when on trials an evaporator thermal resistance of less than 0.01°C/W and a heat flux close to 1000 W/cm2 were achieved. For temperatures below 70°C the most efficient combination is "stainless steel-nickel-ammonia".

Найти похожие

3.
Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Development and investigation of a cooler for electronics on the basis of two-phase loop thermosyphons / V. G. Pastukhov, Yu. F. Maydanik, V. I. Dmitrin // Heat Pipe Science and Technology, An International Journal , vol. - Vol.1, №1. - С. 47-57
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP THERMOSYPHON -- EVAPORATOR -- CAPILLARY STRUCTURE,
Аннотация: The objective of this work was to develop a device for cooling electronic elements with a heat power up to 30 W by its rejection and dissipation in the ambient by free air convection. The device specification assigned the temperature range of the ambient conditions from −40 to +105° C and the available space of 30(W) × 120(H) × 200(L) mm. As a result a hybrid scheme based on a loop thermosyphon was proposed, where the evaporator embodied the capillary structure. In such a scheme, the return working fluid flow was ensured by the combined action of the gravity and capillary forces. Several prototypes with different loop and evaporator designs were tested in laboratory conditions. Water and heptane were used as working fluids. The experiments showed that the role of the capillary structure locally placed in the evaporator can be efficiently implemented by both highly porous cellular materials and capillary grooves made on the evaporating surface. It is also shown that heptane can be effectively used as a working fluid which is appropriate for the temperature range requirements. At the same time the device has good mass-and-size characteristics and total thermal resistance under a nominal heat load of about 1.7° C/W

Найти похожие

4.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Review: Loop heat pipes with flat evaporators [Electronic resource] / Yu. F. Maydanik, M. A. Chernysheva, V. G. Pastukhov. - [Б. м. : б. и.]. - Систем. требования: http://www.scopus.com/record/display.url?eid=2-s2.0-84898450074&origin=resultslist&sort=plf-f&src=s&st1=Maydanik&st2=YU.+F. - 27.08.2014. - Bibliogr. : p. 306-307 (60 ref.). - Б. ц.
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ELECTRONICS COOLING -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper contains an analytical review of developments, results of tests and simulation of loop heat pipes (LHPs) with disk-shaped, rectangular and flat-oval evaporators. Two main directions have been noted in the development of flat evaporators, which may be arbitrarily separated into evaporators with opposite replenishment (EORs) and evaporators with longitudinal replenishment (ELRs). The bodies of such evaporators are made of stainless steel, copper, aluminum. For making wicks use is made of sintered powders and mesh of stainless steel, nickel, titanium, copper, polytetrafluoroethylene (PTFE) and ceramics. Monoporous and biporous capillary structures are considered. Water, ammonia, methanol, ethanol, and acetone have been tested as working fluids. The best results were shown by the combination "copper-copper-water" at temperatures above 70 °C, when on trials an evaporator thermal resistance of less than 0.01°C/W and a heat flux close to 1000 W/cm2 were achieved. For temperatures below 70°C the most efficient combination is "stainless steel-nickel-ammonia".

Найти похожие

5.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe [Electronic resource] / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2016. - Vol. 92. - С. 1026-1033. - Bibliogr. : p. 1033 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- POROUS MATERIAL -- EVAPORATOR
Аннотация: Two models of a flat disk-shaped evaporator of a loop heat pipe have been developed for analyzing the effect of the convective component on heat transfer in a wick, and also on heat-exchange processes in an evaporation zone. Simulation data were obtained for two evaporators. The first evaporator was made entirely of copper, and the second had a body of stainless steel and a nickel wick. The geometrical dimensions of the evaporators were equal. The diameter of the heating zone was 30 mm. Calculations were made for heat fluxes from 2.8 ⋅ 104 to 4.2 ⋅ 105 W/m2. Water was used as a working fluid. An analysis of the results has shown that the contribution of the convective component to the overall heat transfer is small. The higher the thermal conductivity of the wick, the smaller the effect that the convection has on the temperature distribution in the evaporator.

\\\\expert2\\nbo\\International Journal of Heat and Mass Transfer\\2016, v. 92, p.1026-1033.pdf
Найти похожие

6.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe [Electronic resource] / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2016. - Vol. 92. - С. 1026-1033. - Bibliogr. : p. 1033 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- POROUS MATERIAL -- EVAPORATOR
Аннотация: Two models of a flat disk-shaped evaporator of a loop heat pipe have been developed for analyzing the effect of the convective component on heat transfer in a wick, and also on heat-exchange processes in an evaporation zone. Simulation data were obtained for two evaporators. The first evaporator was made entirely of copper, and the second had a body of stainless steel and a nickel wick. The geometrical dimensions of the evaporators were equal. The diameter of the heating zone was 30 mm. Calculations were made for heat fluxes from 2.8 ⋅ 104 to 4.2 ⋅ 105 W/m2. Water was used as a working fluid. An analysis of the results has shown that the contribution of the convective component to the overall heat transfer is small. The higher the thermal conductivity of the wick, the smaller the effect that the convection has on the temperature distribution in the evaporator.

\\\\expert2\\nbo\\International Journal of Heat and Mass Transfer\\2016, v. 92, p.1026-1033.pdf
Найти похожие

7.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Effect of external factors on the operating characteristics of a copper–water loop heat pipe [Electronic resource] / M. A. Chernysheva, S. Yushakova, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2015. - С. 297-304. - Bibliogr. : p. 304 (13 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- OPERATING TEMPERATURE -- COOLING SYSTEM OF COMPUTER SERVERS
Аннотация: The paper presents operating characteristics of a copper–water loop heat pipe (LHP) developed for the use in cooling systems of servers for heat transfer from heat-tensioned elements of electronics to peripheral sections or an outer circulation cooling loop beyond the server. The LHP effective length was 400 mm. The device was provided with a flat-oval evaporator. Its thickness, width and length were equal to 7 mm, 42 mm and 80 mm, respectively. The evaporator was equipped with a thermal interface whose heating zone measured 30 mm × 30 mm. The aim of the research work was to determine the effect of external factors such as the device orientation, the condenser cooling temperature and the condition of heat exchange with the surroundings, on the LHP operating performances. The tests were conducted at the unfavorable LHP slopes from 0° to +60° and heat-sink temperatures from 20 °C to 80 °C, and also in different conditions of heat exchange with the outside ambient. The investigation results are presented in the range of heat loads from 20 to 600 W. It has been shown that the slope dependence of the LHP heat-transfer capacity decreases with increasing heat-sink temperature and practically disappears at a value of the latter of 80 °C. In this case the LHP thermal resistance decreases too and reaches a minimum value of 0.02 °C/W in the range of heat loads from 400 to 600 W.

\\\\expert2\\nbo\\International Journal of Heat and Mass Transfer\\2015, v. 81, p.297-304.pdf
Найти похожие

8.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Effect of external factors on the operating characteristics of a copper–water loop heat pipe [Electronic resource] / M. A. Chernysheva, S. Yushakova, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2015. - С. 297-304. - Bibliogr. : p. 304 (13 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- OPERATING TEMPERATURE -- COOLING SYSTEM OF COMPUTER SERVERS
Аннотация: The paper presents operating characteristics of a copper–water loop heat pipe (LHP) developed for the use in cooling systems of servers for heat transfer from heat-tensioned elements of electronics to peripheral sections or an outer circulation cooling loop beyond the server. The LHP effective length was 400 mm. The device was provided with a flat-oval evaporator. Its thickness, width and length were equal to 7 mm, 42 mm and 80 mm, respectively. The evaporator was equipped with a thermal interface whose heating zone measured 30 mm × 30 mm. The aim of the research work was to determine the effect of external factors such as the device orientation, the condenser cooling temperature and the condition of heat exchange with the surroundings, on the LHP operating performances. The tests were conducted at the unfavorable LHP slopes from 0° to +60° and heat-sink temperatures from 20 °C to 80 °C, and also in different conditions of heat exchange with the outside ambient. The investigation results are presented in the range of heat loads from 20 to 600 W. It has been shown that the slope dependence of the LHP heat-transfer capacity decreases with increasing heat-sink temperature and practically disappears at a value of the latter of 80 °C. In this case the LHP thermal resistance decreases too and reaches a minimum value of 0.02 °C/W in the range of heat loads from 400 to 600 W.

\\\\expert2\\nbo\\International Journal of Heat and Mass Transfer\\2015, v. 81, p.297-304.pdf
Найти похожие

9.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Copper-water loop heat pipes for energy-efficient cooling systems of supercomputers / M. A. Chernysheva, S. Yushakova, Yu. F. Maydanik // Energy . - 2014. - С. 534-542. - Bibliogr. : p. 542 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
COOLING SYSTEM -- OPERATING TEMPERATURE -- LOOP HEAT PIPE
Аннотация: An implementation of a cooling system with a loop heat pipe for thermal control of supercomputers is considered. For this purpose two copper-water loop heat pipes (LHPs) with an effective length of 400mm and ID/OD diameters of the vapor lines of 3/4 and 4/5mm correspondingly were designed and tested. The LHPs were equipped with a flat-oval evaporator with one-sided heat supply. The evaporator had a thickness of 7mm, a length (including the compensation chamber) of 80mm and a width of 42mm. The influence of the cooling temperature of the condenser on the LHP operating characteristics was the central issue of this research. Tests were conducted in the range of the cooling temperature from 20 to 80°C. The heat load supplied to the evaporator was varied from 20 to 600W. A mathematical model for prediction of the LHP's operating temperature has been developed. It takes into consideration three operating modes of a loop heat pipe. Modeling results and their analysis are presented

\\\\expert2\\nbo\\Energy\\2014, v. 69, p. 534-542.pdf
Найти похожие

10.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Copper-water loop heat pipes for energy-efficient cooling systems of supercomputers / M. A. Chernysheva, S. Yushakova, Yu. F. Maydanik // Energy . - 2014. - С. 534-542. - Bibliogr. : p. 542 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
COOLING SYSTEM -- OPERATING TEMPERATURE -- LOOP HEAT PIPE
Аннотация: An implementation of a cooling system with a loop heat pipe for thermal control of supercomputers is considered. For this purpose two copper-water loop heat pipes (LHPs) with an effective length of 400mm and ID/OD diameters of the vapor lines of 3/4 and 4/5mm correspondingly were designed and tested. The LHPs were equipped with a flat-oval evaporator with one-sided heat supply. The evaporator had a thickness of 7mm, a length (including the compensation chamber) of 80mm and a width of 42mm. The influence of the cooling temperature of the condenser on the LHP operating characteristics was the central issue of this research. Tests were conducted in the range of the cooling temperature from 20 to 80°C. The heat load supplied to the evaporator was varied from 20 to 600W. A mathematical model for prediction of the LHP's operating temperature has been developed. It takes into consideration three operating modes of a loop heat pipe. Modeling results and their analysis are presented

\\\\expert2\\nbo\\Energy\\2014, v. 69, p. 534-542.pdf
Найти похожие

 1-10    11-20   21-30   31-40   41-46 
 

Сиглы отделов ЦНБ УрО РАН


  бр.ф. - Бронированный фонд

  бф - Научно-библиографический отдел

  БХЛ - Фонд художественной литературы

  ИИиА -Фонд исторической литературы в ЦНБ УрО РАН

  ИМЕТ -Отдел ЦНБ в Институте металлургии УрО РАН

  кх - Отдел фондов (книгохранениe)

  МБА - Межбиблиотечный абонемент

  мф - Методический фонд

  ок - Отдел научной каталогизации

  оку - Отдел комплектования и учета

  орф - Обменно-резервный фонд

  пф - Читальный зал деловой и патентной информации

  рк - Фонд редкой книги

  ч/з - Главный читальный зал

  эр - Зал электронных ресурсов

  

Сиглы библиотек институтов и НЦ УрО РАН
© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)
Яндекс.Метрика