Главная Новые поступления Описание Шлюз Z39.50

Базы данных


Труды сотрудников Института теплофизики УрО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий (9)Труды Института высокотемпературной электрохимии УрО РАН (15)Труды Института истории и археологии УрО РАН (1)Труды сотрудников Института органического синтеза УрО РАН (15)Труды сотрудников Института химии твердого тела УрО РАН (9)Расплавы (11)Публикации Чарушина В.Н. (3)Каталог библиотеки ИЭРиЖ УрО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=RESISTANCE<.>)
Общее количество найденных документов : 36
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-36 
1.
Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Active coolers based on copper–water LHPs for desktop PC / V. G. Pastukhov, Yu. F. Maydanik // Applied Thermal Engineering. - 2009. - Vol.29, №14-15. - С. 3140-3143
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- COOLER -- THERMAL RESISTANCE
Аннотация: The paper is devoted to the development of active coolers for central processing units (CPU) of desktop computers on the basis of copper–water loop heat pipes (LHP). It presents descriptions of designs and test results for two cooler models containing flat evaporators and condensers of the collector type equipped with a heat sink (radiator). Heat was removed from the radiators by forced convection. It is shown that the maximum heat-transfer capacity of the coolers was 500–600 W. Minimum values of the total thermal resistance of the coolers were equal to 0.15–0.17 °С/W at heat loads of 500 and 250 W, respectively. On the basis of an analysis of distribution of local thermal resistances it has been concluded that additional decrease in the thermal resistance required for cooling a CPU with a generated thermal capacity in excess of 150 W can be achieved at the cost of optimization of radiator design and (or) an increase in the intensity of its cooling

Найти похожие

2.
Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Active coolers based on copper–water LHPs for desktop PC / V. G. Pastukhov, Yu. F. Maydanik // Applied Thermal Engineering. - 2009. - Vol.29, №14-15. - С. 3140-3143
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- COOLER -- THERMAL RESISTANCE
Аннотация: The paper is devoted to the development of active coolers for central processing units (CPU) of desktop computers on the basis of copper–water loop heat pipes (LHP). It presents descriptions of designs and test results for two cooler models containing flat evaporators and condensers of the collector type equipped with a heat sink (radiator). Heat was removed from the radiators by forced convection. It is shown that the maximum heat-transfer capacity of the coolers was 500–600 W. Minimum values of the total thermal resistance of the coolers were equal to 0.15–0.17 °С/W at heat loads of 500 and 250 W, respectively. On the basis of an analysis of distribution of local thermal resistances it has been concluded that additional decrease in the thermal resistance required for cooling a CPU with a generated thermal capacity in excess of 150 W can be achieved at the cost of optimization of radiator design and (or) an increase in the intensity of its cooling

Найти похожие

3.
Инвентарный номер: нет.
   
   R 96


    Rutin, S. B.
    Apparatus for studying heat transfer in nanofluids under high-power heating [Electronic resource] / S. B. Rutin, P. V. Skripov // Journal of Engineering Thermophysics. - 2012. - Vol.21, №2. - P144-153. - Bibliogr. : p. 153 (19 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT TRAHSFER -- HIGH-POWER HEATING -- ELECTRONIC CONTROL
Аннотация: A technique of electronic control of the probe heating power is developed using the method of controlled pulse heating of a wire probe, that is a resistance thermometer, was developed. An apparatus implementing this technique was fabricated. The characteristic parameters of the apparatus are as follows: the heating pulse length, 1 to 10 ms; the heat flux density through the surface of a 20 µm probe, 1 to 10 MW/m2; repeatability of selected power value in a series of pulses is on a level of 0.05%. As an example, the constant heating power mode is applied for comparing the thermal resistance of nanofluids in the region of stable states of liquid and superheated (with respect to the liquid-vapor equilibrium temperature of the base liquid) ones. The parameter was the content of Al2O3 nanoparticles in the base liquid (isopropanol).

\\\\expert2\\NBO\\Journal of Engineering Thermophysics\\2012, V.31, N 2. P. 144-153.pdf
Найти похожие

4.
Инвентарный номер: нет.
   
   R 96


    Rutin, S. B.
    Apparatus for studying heat transfer in nanofluids under high-power heating [Electronic resource] / S. B. Rutin, P. V. Skripov // Journal of Engineering Thermophysics. - 2012. - Vol.21, №2. - P144-153. - Bibliogr. : p. 153 (19 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT TRAHSFER -- HIGH-POWER HEATING -- ELECTRONIC CONTROL
Аннотация: A technique of electronic control of the probe heating power is developed using the method of controlled pulse heating of a wire probe, that is a resistance thermometer, was developed. An apparatus implementing this technique was fabricated. The characteristic parameters of the apparatus are as follows: the heating pulse length, 1 to 10 ms; the heat flux density through the surface of a 20 µm probe, 1 to 10 MW/m2; repeatability of selected power value in a series of pulses is on a level of 0.05%. As an example, the constant heating power mode is applied for comparing the thermal resistance of nanofluids in the region of stable states of liquid and superheated (with respect to the liquid-vapor equilibrium temperature of the base liquid) ones. The parameter was the content of Al2O3 nanoparticles in the base liquid (isopropanol).

\\\\expert2\\NBO\\Journal of Engineering Thermophysics\\2012, V.31, N 2. P. 144-153.pdf
Найти похожие

5.
Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Combined LHP and PHP based heat-transfer system / V. G. Pastukhov, Yu. F. Maydanik // International Journal of Thermal Science. - 2013. - Vol.74. - С. 81-85
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT-TRANSFER SYSTEM -- LOOP HEAT PIPE -- PULSATING HEAT PIPE
Аннотация: The paper presents the results of development and experimental investigation of a heat-transfer system consisting of a pulsating and a loop heat pipe. The pulsating heat pipe (PHP) was made of a copper capillary tube 2 mm in diameter and located on an aluminum plate measuring 260 × 200 × 1 mm, had a thermal contact with the evaporator interface of a loop heat pipe (LHP) 0.6 m long. The working fluid of the PHP was R141b. The LHP was filled with ammonia. A heat-load source measuring 200 × 200 mm was located on the PHP, and its heat was transferred to the LHP evaporator. Tests were conducted at different orientations in the gravity field at heat loads from 10 to 170 W and heat-sink temperatures from −20 to +20 °C. A minimum value of thermal resistance equal to 0.28 °C/W was achieved in the heat load range from 50 to 90 W.

Найти похожие

6.
Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Combined LHP and PHP based heat-transfer system / V. G. Pastukhov, Yu. F. Maydanik // International Journal of Thermal Science. - 2013. - Vol.74. - С. 81-85
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT-TRANSFER SYSTEM -- LOOP HEAT PIPE -- PULSATING HEAT PIPE
Аннотация: The paper presents the results of development and experimental investigation of a heat-transfer system consisting of a pulsating and a loop heat pipe. The pulsating heat pipe (PHP) was made of a copper capillary tube 2 mm in diameter and located on an aluminum plate measuring 260 × 200 × 1 mm, had a thermal contact with the evaporator interface of a loop heat pipe (LHP) 0.6 m long. The working fluid of the PHP was R141b. The LHP was filled with ammonia. A heat-load source measuring 200 × 200 mm was located on the PHP, and its heat was transferred to the LHP evaporator. Tests were conducted at different orientations in the gravity field at heat loads from 10 to 170 W and heat-sink temperatures from −20 to +20 °C. A minimum value of thermal resistance equal to 0.28 °C/W was achieved in the heat load range from 50 to 90 W.

Найти похожие

7.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Compact cooler for electronics on the basis of a pulsating heat pipe / Yu. F. Maydanik, V. I. Dmitrin, V. G. Pastukhov // Applied Thermal Engineering. - 2009. - Vol.29, №17-18. - С. 3511-3517
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
PULSATING HEAT PIPE -- ELECTRONICS COOLING -- HEAT LOAD
Аннотация: The paper presents the results of developing and investigating a compact cooler for electronics made on the basis of a closed loop pulsating heat pipe (CLPHP). The cooler is made of a copper tube 5.6 m long with OD of 2 mm and ID of 1.2 mm in the form a 3D spiral containing 17 turns. The device is equipped with a light copper radiator with a finning area of 1670 cm2, which was blown by an axial fan located inside the spiral. The thermal interface of the cooler situated in the heating zone is made of a copper plate with a thermocontact surface measuring 40 × 35 mm, which was in thermal contact with all the turns of the device. The cooler overall dimensions are 105 × 100 × 60 mm, its mass is 350 g. The operation of the cooler has been investigated with water, methanol and R141b as working fluids at a uniform and concentrated supply of a heat load in different heating modes. A reliable operation of the device has been demonstrated in the range of heat loads from 5 to 250 W. A minimum thermal resistance “heat source–ambient air” equal to 0.32 °C/W was attained with water and methanol as working fluids at a uniform heat load of 250 W. With a heat load concentrated on a section of the thermal interface limited by an area of 1 cm2, a minimum value of thermal resistance equal to 0.62 °C/W was attained at a heat load of 125 W when methanol was used as a working fluid

Найти похожие

8.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Compact cooler for electronics on the basis of a pulsating heat pipe / Yu. F. Maydanik, V. I. Dmitrin, V. G. Pastukhov // Applied Thermal Engineering. - 2009. - Vol.29, №17-18. - С. 3511-3517
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
PULSATING HEAT PIPE -- ELECTRONICS COOLING -- HEAT LOAD
Аннотация: The paper presents the results of developing and investigating a compact cooler for electronics made on the basis of a closed loop pulsating heat pipe (CLPHP). The cooler is made of a copper tube 5.6 m long with OD of 2 mm and ID of 1.2 mm in the form a 3D spiral containing 17 turns. The device is equipped with a light copper radiator with a finning area of 1670 cm2, which was blown by an axial fan located inside the spiral. The thermal interface of the cooler situated in the heating zone is made of a copper plate with a thermocontact surface measuring 40 × 35 mm, which was in thermal contact with all the turns of the device. The cooler overall dimensions are 105 × 100 × 60 mm, its mass is 350 g. The operation of the cooler has been investigated with water, methanol and R141b as working fluids at a uniform and concentrated supply of a heat load in different heating modes. A reliable operation of the device has been demonstrated in the range of heat loads from 5 to 250 W. A minimum thermal resistance “heat source–ambient air” equal to 0.32 °C/W was attained with water and methanol as working fluids at a uniform heat load of 250 W. With a heat load concentrated on a section of the thermal interface limited by an area of 1 cm2, a minimum value of thermal resistance equal to 0.62 °C/W was attained at a heat load of 125 W when methanol was used as a working fluid

Найти похожие

9.
Инвентарный номер: нет.
   
   G 15


    Galashev, A. E.
    Crystallization of Overcooled Argon in Microheterophase 108-Particle Model-Structure Identification and Heat Fluctuation Resistance of the Systems [] / A. E. Galashev, V. P. Skripov // Kristallografiya. - 1989. - V.34, Is.5. - С. 1254-1258
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ARGON

Найти похожие

10.
Инвентарный номер: нет.
   
   G 15


    Galashev, A. E.
    Crystallization of Overcooled Argon in Microheterophase 108-Particle Model-Structure Identification and Heat Fluctuation Resistance of the Systems [] / A. E. Galashev, V. P. Skripov // Kristallografiya. - 1989. - V.34, Is.5. - С. 1254-1258
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ARGON

Найти похожие

 1-10    11-20   21-30   31-36 
 

Сиглы отделов ЦНБ УрО РАН


  бр.ф. - Бронированный фонд

  бф - Научно-библиографический отдел

  БХЛ - Фонд художественной литературы

  ИИиА -Фонд исторической литературы в ЦНБ УрО РАН

  ИМЕТ -Отдел ЦНБ в Институте металлургии УрО РАН

  кх - Отдел фондов (книгохранениe)

  МБА - Межбиблиотечный абонемент

  мф - Методический фонд

  ок - Отдел научной каталогизации

  оку - Отдел комплектования и учета

  орф - Обменно-резервный фонд

  пф - Читальный зал деловой и патентной информации

  рк - Фонд редкой книги

  ч/з - Главный читальный зал

  эр - Зал электронных ресурсов

  

Сиглы библиотек институтов и НЦ УрО РАН
© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)
Яндекс.Метрика