Инвентарный номер: нет.
   
   P 30


   
    Passive cooling system for an aircraft electronic box / Yu. F. Maydanik, S. V. Vershinin, V. G. Pastukhov, M. Chernysheva, C. Sarno, C. Tantolin // Heat Pipe Science and Technology, An International Journal , vol. - 2010. - Vol.1, №3. - С. 251-260
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AIRCRAFTS -- LOOP HEAT PIPE -- ELECTRONIC BOX -- PASSIVE COOLING SYSTEM
Аннотация: The paper represents the results of development and thermal tests of a cooling system of a seat electronic box, managing the in-flight entertainment system used aboard commercial aircrafts. The system is completely passive and consists of two conventional copper-water miniature heat pipes and two miniature loop heat pipes with R-141b as a working fluid. Two crossbeams of a passenger seat made of aluminum alloy cooled by means of free air convection were used as heat sinks. At the maximum heat load of 100 W the cooling system provides a temperature of a cooled object at a level of not above 81°C at the ambient temperature of 22°C, which is 4°C below that of the maximum specified temperature


Инвентарный номер: нет.
   
   L 88


   
    Loop thermosyphon thermal management of the avionics of an in-flight entertainment system [Электронный ресурс] / C. Sarno, C. Tantolin, R. Hodot, Yu. F. Maydanik, S. V. Vershinin // Applied Thermal Engineering. - 2013. - Vol.51, №1-2. - P764-769
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AVIONICS -- COOLING SYSTEM -- LOOP THERMOSYPHON
Аннотация: A new generation of in-flight entertainment systems (IFEs) used on board commercial aircrafts is required to provide more and more services (audio, video, internet, multimedia, phone, etc.). But, unlike other avionics systems most of the IFE equipment and boxes are installed inside the cabin and they are not connected to the aircraft cooling system. The most critical equipment of the IFE system is a seat electronic box (SEB) installed under each passenger seat. Fans are necessary to face the increasing power dissipation. But this traditional approach has some drawbacks: extra cost multiplied by the seat number, reliability and maintenance. The objective of this work is to develop and evaluate an alternative completely passive cooling system (PCS) based on a two-phase technology including heat pipes and loop thermosyphons (LTSs) adequately integrated inside the seat structure and using the benefit of the seat frame as a heat sink. Previous works have been performed to evaluate these passive cooling systems which were based on loop heat pipe. This paper presents results of thermal tests of a passive cooling system of the SEB consisting of two LTSs and R141b as a working fluid. These tests have been carried out at different tilt angles and heat loads from 10 to 100 W. It has been shown that the cooled object temperature does not exceed the maximum given value in the range of tilt angles ±20° which is more wider than the range which is typical for ordinary evolution of passenger aircrafts


Инвентарный номер: нет.
   
   P 30


   
    Passive cooling system for an aircraft electronic box / Yu. F. Maydanik, S. V. Vershinin, V. G. Pastukhov, M. Chernysheva, C. Sarno, C. Tantolin // Heat Pipe Science and Technology, An International Journal , vol. - 2010. - Vol.1, №3. - С. 251-260
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AIRCRAFTS -- LOOP HEAT PIPE -- ELECTRONIC BOX -- PASSIVE COOLING SYSTEM
Аннотация: The paper represents the results of development and thermal tests of a cooling system of a seat electronic box, managing the in-flight entertainment system used aboard commercial aircrafts. The system is completely passive and consists of two conventional copper-water miniature heat pipes and two miniature loop heat pipes with R-141b as a working fluid. Two crossbeams of a passenger seat made of aluminum alloy cooled by means of free air convection were used as heat sinks. At the maximum heat load of 100 W the cooling system provides a temperature of a cooled object at a level of not above 81°C at the ambient temperature of 22°C, which is 4°C below that of the maximum specified temperature


Инвентарный номер: нет.
   
   L 88


   
    Loop thermosyphon thermal management of the avionics of an in-flight entertainment system [Электронный ресурс] / C. Sarno, C. Tantolin, R. Hodot, Yu. F. Maydanik, S. V. Vershinin // Applied Thermal Engineering. - 2013. - Vol.51, №1-2. - P764-769
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AVIONICS -- COOLING SYSTEM -- LOOP THERMOSYPHON
Аннотация: A new generation of in-flight entertainment systems (IFEs) used on board commercial aircrafts is required to provide more and more services (audio, video, internet, multimedia, phone, etc.). But, unlike other avionics systems most of the IFE equipment and boxes are installed inside the cabin and they are not connected to the aircraft cooling system. The most critical equipment of the IFE system is a seat electronic box (SEB) installed under each passenger seat. Fans are necessary to face the increasing power dissipation. But this traditional approach has some drawbacks: extra cost multiplied by the seat number, reliability and maintenance. The objective of this work is to develop and evaluate an alternative completely passive cooling system (PCS) based on a two-phase technology including heat pipes and loop thermosyphons (LTSs) adequately integrated inside the seat structure and using the benefit of the seat frame as a heat sink. Previous works have been performed to evaluate these passive cooling systems which were based on loop heat pipe. This paper presents results of thermal tests of a passive cooling system of the SEB consisting of two LTSs and R141b as a working fluid. These tests have been carried out at different tilt angles and heat loads from 10 to 100 W. It has been shown that the cooled object temperature does not exceed the maximum given value in the range of tilt angles ±20° which is more wider than the range which is typical for ordinary evolution of passenger aircrafts