Инвентарный номер: нет.
   
   D 67


    Dmitrin, V. I.
    Experimental investigations of a closed-loop oscillating heat pipe / V. I. Dmitrin, Yu. F. Maydanik // High Temperature. - 2007. - Vol. 45, № 5. - С. 703-707. - Bibliogr : с. 707 (6 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ZONES OF HEATING -- HEAT TRANSPORT -- SIMULTANEOUS DECREASE
Аннотация: Results are given of experimental investigations of an oscillating heat pipe (OHP) made in the form of a closed-loop coil of a copper capillary tube with an inside diameter of 2 mm, 4.5 m long, and filled with water in an amount of 50% of internal volume. The starting characteristics of OHP are studied in the range of heat loads from 30 to 100 W under conditions of cooling by way of natural and forced air convection. The pattern of temperature pulsations in the zones of heating, heat transport, and cooling is investigated. It is found that temperature pulsations exhibit a chaotic pattern. In cooling of an OHP by way of natural convection, the increase in heat load is accompanied by an increase in the maximal temperature of the heating zone with a simultaneous decrease in the nonuniformity of the temperature field. When an OHP is cooled by way of forced convection, a decrease in the maximal temperature of the heating zone is observed; however, this is accompanied by an increase in the amplitude of temperature pulsations and in the nonuniformity of the temperature field

\\\\Expert2\\NBO\\High Temperature\\2007, v. 45, p.703.pdf

Инвентарный номер: нет.
   
   D 67


    Dmitrin, V. I.
    Development and investigation of compact cooler using a pulsating heat pipe / V. I. Dmitrin, Yu. F. Maydanik, V. G. Pastukhov // High Temperature. - 2010. - Vol. 48, № 4. - С. 565-571. - Bibliogr. : с. 571 (16 ref)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT PIPE -- WATER -- METHANOL
Аннотация: Results are given of development and investigations of a compact cooler for application in electronics, based on an open-loop oscillating heat pipe. The cooler operation is investigated, where water, methanol, and R141b Freon are used as working fluids under conditions of uniform and concentrated heat input. The effective operation of the device is demonstrated in the heat load range from 5 to 250 W. The “heat source-ambient air” minimal thermal resistance of 0.35°C/W was reached with water under uniform heat load of 250 W. The maximal value of heat load density is 75 W/cm2 with the heat flux concentration on the surface of 1 cm2, where methanol is used as working fluid

\\\\Expert2\\NBO\\High Temperature\\2010, v. 48, N 4, p.565.pdf

Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Development and investigation of a cooler for electronics on the basis of two-phase loop thermosyphons / V. G. Pastukhov, Yu. F. Maydanik, V. I. Dmitrin // Heat Pipe Science and Technology, An International Journal , vol. - Vol.1, №1. - С. 47-57
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP THERMOSYPHON -- EVAPORATOR -- CAPILLARY STRUCTURE,
Аннотация: The objective of this work was to develop a device for cooling electronic elements with a heat power up to 30 W by its rejection and dissipation in the ambient by free air convection. The device specification assigned the temperature range of the ambient conditions from −40 to +105° C and the available space of 30(W) × 120(H) × 200(L) mm. As a result a hybrid scheme based on a loop thermosyphon was proposed, where the evaporator embodied the capillary structure. In such a scheme, the return working fluid flow was ensured by the combined action of the gravity and capillary forces. Several prototypes with different loop and evaporator designs were tested in laboratory conditions. Water and heptane were used as working fluids. The experiments showed that the role of the capillary structure locally placed in the evaporator can be efficiently implemented by both highly porous cellular materials and capillary grooves made on the evaporating surface. It is also shown that heptane can be effectively used as a working fluid which is appropriate for the temperature range requirements. At the same time the device has good mass-and-size characteristics and total thermal resistance under a nominal heat load of about 1.7° C/W


Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Compact cooler for electronics on the basis of a pulsating heat pipe / Yu. F. Maydanik, V. I. Dmitrin, V. G. Pastukhov // Applied Thermal Engineering. - 2009. - Vol.29, №17-18. - С. 3511-3517
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
PULSATING HEAT PIPE -- ELECTRONICS COOLING -- HEAT LOAD
Аннотация: The paper presents the results of developing and investigating a compact cooler for electronics made on the basis of a closed loop pulsating heat pipe (CLPHP). The cooler is made of a copper tube 5.6 m long with OD of 2 mm and ID of 1.2 mm in the form a 3D spiral containing 17 turns. The device is equipped with a light copper radiator with a finning area of 1670 cm2, which was blown by an axial fan located inside the spiral. The thermal interface of the cooler situated in the heating zone is made of a copper plate with a thermocontact surface measuring 40 × 35 mm, which was in thermal contact with all the turns of the device. The cooler overall dimensions are 105 × 100 × 60 mm, its mass is 350 g. The operation of the cooler has been investigated with water, methanol and R141b as working fluids at a uniform and concentrated supply of a heat load in different heating modes. A reliable operation of the device has been demonstrated in the range of heat loads from 5 to 250 W. A minimum thermal resistance “heat source–ambient air” equal to 0.32 °C/W was attained with water and methanol as working fluids at a uniform heat load of 250 W. With a heat load concentrated on a section of the thermal interface limited by an area of 1 cm2, a minimum value of thermal resistance equal to 0.62 °C/W was attained at a heat load of 125 W when methanol was used as a working fluid


Инвентарный номер: нет.
   
   D 67


    Dmitrin, V. I.
    Experimental investigations of a closed-loop oscillating heat pipe / V. I. Dmitrin, Yu. F. Maydanik // High Temperature. - 2007. - Vol. 45, № 5. - С. 703-707. - Bibliogr : с. 707 (6 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ZONES OF HEATING -- HEAT TRANSPORT -- SIMULTANEOUS DECREASE
Аннотация: Results are given of experimental investigations of an oscillating heat pipe (OHP) made in the form of a closed-loop coil of a copper capillary tube with an inside diameter of 2 mm, 4.5 m long, and filled with water in an amount of 50% of internal volume. The starting characteristics of OHP are studied in the range of heat loads from 30 to 100 W under conditions of cooling by way of natural and forced air convection. The pattern of temperature pulsations in the zones of heating, heat transport, and cooling is investigated. It is found that temperature pulsations exhibit a chaotic pattern. In cooling of an OHP by way of natural convection, the increase in heat load is accompanied by an increase in the maximal temperature of the heating zone with a simultaneous decrease in the nonuniformity of the temperature field. When an OHP is cooled by way of forced convection, a decrease in the maximal temperature of the heating zone is observed; however, this is accompanied by an increase in the amplitude of temperature pulsations and in the nonuniformity of the temperature field

\\\\Expert2\\NBO\\High Temperature\\2007, v. 45, p.703.pdf

Инвентарный номер: нет.
   
   D 67


    Dmitrin, V. I.
    Development and investigation of compact cooler using a pulsating heat pipe / V. I. Dmitrin, Yu. F. Maydanik, V. G. Pastukhov // High Temperature. - 2010. - Vol. 48, № 4. - С. 565-571. - Bibliogr. : с. 571 (16 ref)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT PIPE -- WATER -- METHANOL
Аннотация: Results are given of development and investigations of a compact cooler for application in electronics, based on an open-loop oscillating heat pipe. The cooler operation is investigated, where water, methanol, and R141b Freon are used as working fluids under conditions of uniform and concentrated heat input. The effective operation of the device is demonstrated in the heat load range from 5 to 250 W. The “heat source-ambient air” minimal thermal resistance of 0.35°C/W was reached with water under uniform heat load of 250 W. The maximal value of heat load density is 75 W/cm2 with the heat flux concentration on the surface of 1 cm2, where methanol is used as working fluid

\\\\Expert2\\NBO\\High Temperature\\2010, v. 48, N 4, p.565.pdf

Инвентарный номер: нет.
   
   P 31


    Pastukhov, V. G.
    Development and investigation of a cooler for electronics on the basis of two-phase loop thermosyphons / V. G. Pastukhov, Yu. F. Maydanik, V. I. Dmitrin // Heat Pipe Science and Technology, An International Journal , vol. - Vol.1, №1. - С. 47-57
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP THERMOSYPHON -- EVAPORATOR -- CAPILLARY STRUCTURE,
Аннотация: The objective of this work was to develop a device for cooling electronic elements with a heat power up to 30 W by its rejection and dissipation in the ambient by free air convection. The device specification assigned the temperature range of the ambient conditions from −40 to +105° C and the available space of 30(W) × 120(H) × 200(L) mm. As a result a hybrid scheme based on a loop thermosyphon was proposed, where the evaporator embodied the capillary structure. In such a scheme, the return working fluid flow was ensured by the combined action of the gravity and capillary forces. Several prototypes with different loop and evaporator designs were tested in laboratory conditions. Water and heptane were used as working fluids. The experiments showed that the role of the capillary structure locally placed in the evaporator can be efficiently implemented by both highly porous cellular materials and capillary grooves made on the evaporating surface. It is also shown that heptane can be effectively used as a working fluid which is appropriate for the temperature range requirements. At the same time the device has good mass-and-size characteristics and total thermal resistance under a nominal heat load of about 1.7° C/W


Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Compact cooler for electronics on the basis of a pulsating heat pipe / Yu. F. Maydanik, V. I. Dmitrin, V. G. Pastukhov // Applied Thermal Engineering. - 2009. - Vol.29, №17-18. - С. 3511-3517
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
PULSATING HEAT PIPE -- ELECTRONICS COOLING -- HEAT LOAD
Аннотация: The paper presents the results of developing and investigating a compact cooler for electronics made on the basis of a closed loop pulsating heat pipe (CLPHP). The cooler is made of a copper tube 5.6 m long with OD of 2 mm and ID of 1.2 mm in the form a 3D spiral containing 17 turns. The device is equipped with a light copper radiator with a finning area of 1670 cm2, which was blown by an axial fan located inside the spiral. The thermal interface of the cooler situated in the heating zone is made of a copper plate with a thermocontact surface measuring 40 × 35 mm, which was in thermal contact with all the turns of the device. The cooler overall dimensions are 105 × 100 × 60 mm, its mass is 350 g. The operation of the cooler has been investigated with water, methanol and R141b as working fluids at a uniform and concentrated supply of a heat load in different heating modes. A reliable operation of the device has been demonstrated in the range of heat loads from 5 to 250 W. A minimum thermal resistance “heat source–ambient air” equal to 0.32 °C/W was attained with water and methanol as working fluids at a uniform heat load of 250 W. With a heat load concentrated on a section of the thermal interface limited by an area of 1 cm2, a minimum value of thermal resistance equal to 0.62 °C/W was attained at a heat load of 125 W when methanol was used as a working fluid