Инвентарный номер: нет.
   
   D 69


    Dokashenko, S. I.
    Capacitance of the double electric layer on liquid bismuth in molten alkali halides [Text] / S. I. Dokashenko, V. P. Stepanov, M. V. Smirnov // Melts. - 1988. - V. 2, N 5. - P385-390. - Bibliogr.: 12 ref.
ББК 54
Рубрики: ХИМИЧЕСКИЕ НАУКИ
Кл.слова (ненормированные):
ЕМКОСТЬ -- СЛОЙ ЭЛЕКТРИЧЕСКИЙ -- ВИСМУТ ЖИДКИЙ -- Bi -- МЕТАЛЛЫ ЩЕЛОЧНЫЕ -- ГАЛОГЕНИД ЩЕЛОЧНЫХ МЕТАЛЛОВ -- РАСПЛАВ ГАЛОГЕНИДНЫЙ
Аннотация: The capacitance of the double electric layer on liquid bismuth in molten alkali halides is measured as a function of temperature T and potential E. In general, the minimum-capacitance potential (MCP) does not coincide with the zero-charge potential (ZCP)


Инвентарный номер: нет.
   
   E 43


   
    Electrocapillary phenomena and doublelayer capacity on solid gold in molten alkali chlorides [Text] / M. V. Smirnov, V. P. Stepanov, V. S. Belyayev, S. I. Dokashenko // 37-th Meet. Int. Soc. Electrochem. (Vilnius, 1986, Aug., 24-31): Ext. Abstr. - 1986. - V. 3. - P45-47
ББК 54
Рубрики: ХИМИЧЕСКИЕ НАУКИ
Кл.слова (ненормированные):
ЯВЛЕНИЯ ЭЛЕКТРОКАПИЛЛЯРНЫЕ -- ЗОЛОТО ТВЕРДОЕ -- ХЛОРИД -- РАСПЛАВ ХЛОРИДНЫЙ -- Au


Инвентарный номер: нет.
   
   E 27


   
    Effect of KCl and CsCl on the Electrical Conductivity of Molten LiF–KBr at the Critical Composition / V. P. Stepanov , L. M. Babushkina , S. I. Dokashenko, D. S. Peshkin // Journal of Chemical & Engineering Data. - 2012. - Vol. 57, № 8. - С. 2309-2312. : граф. - Библиогр.: с. 2312 (12 ref.) . - ISSN 0021-9568
ББК 54
Рубрики: ХИМИЧЕСКИЕ НАУКИ
Кл.слова (ненормированные):
ЭЛЕКТРОПРОВОДНОСТЬ -- LiF–KBr -- CsCl
Аннотация: The electrical conductivity was measured from the melting point to 1280 K for molten 0.7 LiF–0.3 KBr (its composition corresponds to the top of the miscibility gap) containing (2.3, 4.4, 6.5, 8.8, and 11.2) mol % KCl or (1.2, 2.5, 5.5, and 10.2) mol % CsCl to establish the influence of this solute on the stability of the two-phase system. These results indicate that the temperature dependences of the conductivity along the saturation lines for all of the mixtures studied herein are similar to one another. Hence, this demonstrates that small additions of KCl and CsCl to the dissolving melt of LiF-KBr do not exert a substantial influence on its type of criticality. In the vicinity of the critical point, the temperature dependence on conductivity differences for melts is investigated and is described by the equation Δκ ≈ (Tc – T)k, where k is the critical exponent (k = 0.98). The critical temperature changes as a function of the mixture composition and depends on the ion size of the salt added. The critical temperature increases continuously with the addition of CsCl to molten LiF-KBr, whereas it decreases as the fraction as KCl is added. This circumstance must occur during the organization process, as salts accumulate in the dissolving molten mixture, and they prevent the confluence of the phases at a given operating temperature. To interpret the experimental results, the charged hard sphere model for ionic melts in the Debye–Hückel approximation was used with an account of the excluded volume.


Инвентарный номер: нет.
   
   S 83


    Stepanov, V. P.
    Liquid + liquid equilibrium in mixtures of lithium fluoride with potassium and rubidium halides / V. P. Stepanov, L. M. Babushkina, S. I. Dokashenko // Journal of Chemical Thermodynamics. - 2012. - № 51. - С. 12-16. - Bibliogr. : p. 16 (33 ref.) . - ISSN 0021-9614
ББК 54
Рубрики: ХИМИЧЕСКИЕ НАУКИ
Кл.слова (ненормированные):
ЭЛЕКТРОПРОВОДНОСТЬ -- СЕГРЕГАЦИИ -- ЩЕЛОЧНЫЕ МЕТАЛЛЫ
Аннотация: The liquid + liquid phase equilibrium of molten mixtures of lithium fluoride with potassium and rubidium halides was investigated over an extended temperature range in the two-phase region along the saturation line by the electrical conductivity method. In the overwhelming majority of mixtures, the electrical conductivity for coexisting equilibrium phases increased when the temperature increased. For mixtures with only potassium bromide, it decreased because of the extensive solubility of potassium bromide in lithium fluoride. The electrical conductivity for the light phase was half the value of the conductivity of the pure lithium fluoride. The electrical conductivity of the heavy phase did not differ enough from the conductivity of the pure heavy alkali halides. At the same time, the solubility of the heavy component in LiF was many times less than the lithium fluoride solubility in the lower phase. This contradiction points to essential reorganisation of the structure of the light phase. The difference between the conductivities of the coexisting phases at equal temperatures increased as the radius of the halide anion or alkali cation grew. The temperature growth led to the increase in the conductivity difference along the saturation line for mixtures of LiF with RbI. For mixtures of LiF with lighter alkali halides, it decreased up to zero at the critical mixing point for LiF + KBr mixtures as the temperature increased. Between the coexisting equilibrium phases, a transient layer was revealed, where a conductivity gradient exists. The thickness of this layer decreased as the temperature decreased and the sum of the ionic radii of the mixtures increased.