DE GRUYTER

Vladimir V. Kiselev

COLLECTIVE EFFECTS IN CONDENSED MATTER PHYSICS

STUDIES IN MATHEMATICAL PHYSICS 44

DE G Vladimir V. Kiselev

Collective Effects in Condensed Matter Physics

Mathematics Subject Classification 2010 82D, 81V80, 74B

Author

Dr. Sci. (Phys.-Math.) Vladimir V. Kiselev Russian Academy of Sciences M. N. Mikheev Institute of Metal Physics Sophia Kovalevskaya str., 18 620108 Yekaterinburg kiseliev@imp.uran.ru

ISBN 978-3-11-058509-4 e-ISBN (PDF) 978-3-11-058618-3 e-ISBN (EPUB) 978-3-11-058513-1 ISSN 2194-3532

Library of Congress Control Number: 2018934560

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2018 Walter de Gruyter GmbH, Berlin/Boston Typesetting: le-tex publishing services GmbH, Leipzig Printing and binding: CPI books GmbH, Leck

www.degruyter.com

Contents

Foreword — V

Prefactory Notes — X

1	Electrons and Holes in Metals and Semiconductors —— 1
1.1	Electrons in Crystalline Solids: The Formulation of a Simplified Single
	Particle Model —— 1
1.2	The Theoretical Description of the Periodic Structure of Crystals — 3
1.3	A Reciprocal Lattice and the First Brillouin Zone —— 7
1.4	Energy Levels of an Electron in a Periodic Potential and Bloch's
	Theorem —— 10
1.5	Electrons in a Weak Periodic Field —— 22
1.6	The Fermi Energy, Surface, Temperature, and Thermal Layer for a Gas of
	Free Electrons —— 35
1.7	Method of Constructing the Fermi Surface of a Weak Potential:
	The Second and Subsequent Brillouin Zones —— 40
1.8	Electronic Specific Heat of Normal Metals —— 44
1.9	Screening of the Coulomb Field of External Electric Charges in Metals
	(the Thomas-Fermi Model) and Semiconductors —— 53
1.10	Plasmons and Dynamic Screening of the Electron-Electron Interactions
	in Metals —— 57
1.11	The Pauli Principle and Suppression of Electron-Electron Collisions
	in Metals —— 61
1.12	The Concept of the Mean Free Path of Electrons: Electrical and Thermal
	Conductivities of Metals and the Wiedemann–Franz law —— 63
1.13	The Semiclassical Dynamics of Electrons in a Crystal —— 71
1.14	The Justification of Semiclassical Equations of Motion, the Hamiltonian
	Formulation and Liouville's Theorem —— 74
1.15	The Lack of Contribution of Bands Completely Filled with Electrons to
	an Electric Current and a Flux of Heat —— 77
1.16	Holes — 78
1.17	Semiclassical Motion of Electrons in a Crystal in Constant Electric and
	Magnetic Fields —— 83
1.18	General Properties of Semiconductors: the Concentration of Electrons
	and Holes and the Law of Mass Action —— 90
1.19	Intrinsic Semiconductors —— 96
1.20	Impurity Levels —— 97
1.21	Concentrations of Charge Carriers and the Chemical Potential of
	Impurity Semiconductors —— 101

1.22	The Electrical Conductivity of Semiconductors —— 107
1.23	Rectifying Action of a p-n Junction and a Simplified Calculation of the
	Current Voltage Characteristics of a Diode —— 109
2	Crystal Lattice Vibrations —— 118
2.1	The Dynamics of the Crystal Lattice in the Harmonic
	Approximation —— 118
2.2	General Properties of the Force Constants —— 122
2.3	The Born-Karman Boundary Conditions - the Dynamic Matrix of a
	Crystal —— 124
2.4	Properties of the Dynamic Matrix —— 125
2.5	The Normal Modes of Lattice Vibrations —— 126
2.6	Goldstone's Theorem – Acoustic and Optical Modes of the Normal
	Vibrations of a Crystal —— 132
2.7	Lattice Vibrations Using an Example of a Linear Chain of Atoms —— 135
2.8	A Diatomic Chain: A One-Dimensional Lattice with Basis —— 139
2.9	Quantum Theory of the Harmonic Crystal —— 143
2.10	The Debye Interpolation Theory of the Heat Capacity of a Crystal —— 145
2.11	The Role of the Anharmonic Terms in the Energy of a Crystal —— 148
2.12	Electron-Phonon Interaction —— 151
3	Superconductivity 154
3.1	The Basic Physical Properties of Superconductors —— 154
3.2	The Qualitative Features of the Microscopic Theory —— 159
3.3	The Second Order Correction to the Energy of a Two Electron System
	Due to Electron-Phonon Interaction —— 162
3.4	Cooper Pairs —— 166
3.5	The Bardeen-Cooper-Schrieffer Theory (Qualitative Results) —— 170
3.6	The Ginzburg-Landau Theory - The London Penetration Depth 174
3.7	Quantization of a Magnetic Flux —— 177
3.8	The Microscopic Nature of Two Types of Superconductors – Vortex
	Lattices and Superconducting Magnets —— 178
3.9	Possible Physical Mechanisms of High Temperature
	Conductivity —— 182
3.10	High Temperature Superconductors —— 185
4	Quantum Coherent Optics: Interaction of Radiation with Matter —— 191
4.1	Maxwell's Equations and Natural Oscillations of an Electromagnetic
	Field in a Closed Cavity —— 191
4.2	Quantization of a Free Electromagnetic Field —— 198
4.3	Zero point Energy —— 203

4.4	Amplitude and Phase Operators for Single-Mode Quantum States of a Radiation Field —— 204	
4.5	Coherent Photon States: Their Properties and Relationship with	
4.5	Classical Electromagnetic Waves —— 207	
4.6	Equilibrium Thermal Radiation and Its Properties —— 211	
4.7	The Einstein Coefficients: Spontaneous and Induced Energy Transitions	
	of an Atomic System Under an Electromagnetic Field —— 217	
4.8	Interaction Between a Quantized Electromagnetic Field and a Two Level	
	Atom – the Electric Dipole Approximation — 220	
4.9	The Rates of Spontaneous and Induced Atomic Transitions When	
	Electromagnetic Waves Travel through a Medium as Well as Under	
	Thermal Radiation Conditions —— 225	
4.10	Absorption and Amplification of Directed Plane-Parallel Flux by	
	Matter —— 238	
4.11	The Concept of Time and Spatial Dispersions of a Medium —— 242	
4.12	Intrinsic Oscillations of Optical Laser —— 249	
4.13	A Pulsed Ruby Laser —— 252	
4.14	Heterolasers —— 255	
4.15	Formalism of the Density Matrix and Semiclassical Theory of the	
	Propagation of Electromagnetic Waves in a Two Level Atom	
	Medium —— 259	
4.16	Self-Induced Transparency and the Concept of Strongly Nonlinear	
	Particle-like Excitations (Solitons) —— 265	
5 Dis	slocations and Martensitic Transitions —— 278	
5.1	Ordered Macroscopic States of a Crystal and	
	a Nonlinear Theory of Elasticity —— 278	
5.2	Dislocations in a Crystal —— 286	
5.3	Basic Equations of the Theory of Dislocations —— 296	
5.4	Interaction of Dislocations with a Stress Field —— 312	
5.5	An Expansion in Multipole Moments of Fields Created by Dislocation	
	Systems —— 317	
5.6	The Peierls Model of a Dislocation Core —— 326	
5.7	Weakly Nonlinear Soliton-like Excitations in a Two-Dimensional	
	Martensitic Transition Model —— 335	
Exercises —— 345		
Bibliography —— 357		
Index 361		